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Abstract
Operations Management of Crowdsourcing and Crowd Behavior

Lu Wang
Doctor of Philosophy

Graduate Department of Rotman School of Management
University of Toronto

2017

This thesis studies problems in operations management about how to manage crowd

behavior. In Chapter 2, we investigate the crowdsourcing contest. In a crowdsourcing

contest, innovation is outsourced by a firm to an open crowd that compete in generating

innovative solutions. Since the projects typically consist of multiple attributes, we con-

sider two alternative mechanisms. One is a simultaneous contest, where the best solution

is chosen from the aggregate solutions simultaneously submitted by all contestants. The

other is multiple sequential sub-contests, with each dedicated to one attribute and the

contestants asked to build upon the best work in progress from previous sub-contests.

The comparison of the expected best performances in the two contests depends on the

project’s characteristics.

In Chapter 3, we study the revenue sharing policy in the subscription platform. Sub-

scription providers such as Spotify, Netflix and OneGo (an all-you-can-fly subscription

service provider) crowdsource products/services from many vendors and bundle them

for the price of one. The collected subscription fees for the bundle then are allocated

according to the realized contributions by each crowdsourced product. However, this

allocation scheme may create incentive incompatibility for vendors, given their options

of not joining the bundle. We examine the incentive compatibility of different parties

under various bundling strategies.

In Chapter 4, we study the customer behavior with an online reservation system.

Online reservation system allows customers to join a queue and virtually wait for service

before arriving on site. For example, some platforms have been designed to collect the
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information of restaurants and show the real-time congestion levels (e.g., Nowait). We

consider a model in which customers must travel from their location to the service area

and incur a travelling cost. When customers intend to book service online, they are

informed about their positions in the queue at the time of booking, so that they make

their decision whether to join the queue taking into account both their travelling time

and expected waiting time. With those customer behaviors, the optimal policy of a firm

heavily relies on the conditions of the travelling and benefit of the service.
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Chapter 1

Introduction

Because of the convenience of the Internet, more and more companies are basing their
businesses on large numbers of agents and consumers who are spread all over the world.
Since business models are trending towards optimal control of every process, how to man-
age crowds is becoming one of the most important and challenging research topics. The
feature of crowdsourced businesses is that they can gather a vast amount of information
or products. Since the field of operations management is concerned with designing an
efficient production process and optimally matching supply and demand, there are great
many opportunities to research the management of crowdsourced products. Our research
aims to characterize crowd behavior and to serve as a tool with which companies can
manage their business processes better. We study problems in the following three fields:

• Crowdsourcing Ideas

• Crowdsourcing Digital Products

• Crowd Behavior in Queueing System

In the first chapter, we study the crowdsourcing innovation contest. Innovation con-
test is a powerful tool that companies can use to solve problems by outsourcing their
tasks to the public. In tournament theory, the description of the contestantąŕs behavior
is well-developed whereas the optimality of various mechanisms is still under discussion.
Instead of one big contest with a single prize, some firms design a number of contests
or set up milestones with prizes at each of them. Some studies consider the task to be
a one-dimensional project and investigate the motivational effect of those small prizes
on contestants. However, they may ignore the fact that those projects often have many
attributes, and the contest or milestone with a small prize focuses on just one of those

1
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attributes. We compare the two alternative mechanisms for an innovative project involv-
ing multiple attributes. One crowdsourcing mechanism is to run a simultaneous contest
where the best solution is chosen from the single solutions submitted simultaneously by
all the contestants. The other mechanism is to run a number of sequential sub-contests,
each of which deals with one element of the project.

There we find that, in contrast to the simultaneous contest, there are two opposing
forces affecting performance in the sequential contest. One is the “cooperation” effect
that enhances performance in the sequential contest since it combines the best solutions
across different attributes. The other one is the “effort reduction” effect that weakens
performance in the sequential contest. Unlike the sequential contest, the simultaneous
contest has its advantage in pooling the risks of failure in multiple competitions, and
thus it is better at motivating contestants to make an effort. With those two forces, I
show that, depending on the nature of the problem, either of those mechanisms can be
optimal.

In the second chapter, we study the crowdsourced digital products. In the informa-
tion and entertainment industries, there is a trend towards bundling and subscription
services. Previous studies have investigated the optimality of the bundling service and
have found that it can achieve great economic efficiency. However, evidence shows that
not all the product vendors are willing to join a subscription service. Since some firms
(e.g., Spotify) allocate the subscription fees collected according to the contribution made
by each crowdsourced product, the profit allocation scheme may be crucial in affecting
incentive compatibility. In our work, we build a model to characterize the profit alloca-
tion scheme, and investigate the incentive compatibility for vendors of different products
who are given the option of not joining the bundling platform.

The result shows that such allocation schemes will create incentive incompatibility.
In particular, the vendors of high-quality products prefer the pure bundling subscription,
whereas the vendors of low-quality products tend to favor the separate sales, in which
their own product is sold separately in addition being part of the bundle. Moreover,
if products are differentiated by their valuation dispersion, the vendor of the products
with higher value dispersion (i.e., the popular vendor) tends to prefer the bundling sales,
whereas the vendor of the products with lower value distpersion (i.e., the niche vendor)
tends to favor the separate sales. We also compare the ex-post and ex-ante profit alloca-
tion schemes. The result will provide insight into whether product vendors should join a
subscription platform (e.g., Netflix) that negotiate returns according to the expectation
of a products’ popularity instead of the actual usage.
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In the third chapter, we study the crowd behavior with an online reservation system.
One of the most important features of an online reservation system is that it allows
customers to line up without being on site. Some mobile phone applications (e.g., Nowait)
allow customers to know the real-time congestion of the service area. Customers can then
decide whether to join the queue, taking into account how long the queue is expected to
be when they arrive at the service location. In other words, while a customer is travelling
from his or her home to the service provider, the queue may become shorter. Since the
amount by which the queue has become shorter is associated with the travelling distance,
intuitively the more time customers spend in travelling, the less time they have to wait
in line. Hence, there is a tradeoff between the cost of waiting in the queue and the cost
of travelling.

We find that when the travelling cost is negligible, customers who live farther away
from the service location are more likely to join the queue. However, when the travelling
cost is high enough, customers who live farther away are less likely to join the queue. By
considering online reservations, my study connects the queuing system with the Hotelling
model. Contrary to the Hotelling model’s assumption that the attraction of the service
decreases in the distance between the service and the customer locations, We find that
the attraction increases in the distance if the travelling cost is negligible. The result will
provide managerial insights for choosing the optimal policy by considering the travelling
costs and types of business.
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Chapter 2

Simultaneous vs. Sequential
Crowdsourcing Contests

2.1 Introduction

The crowdsourcing contest has been widely adopted by firms, non-profit organizations,
and governments to solicit innovative solutions to complex problems. In a typical crowd-
sourcing contest, a contest organizer, by offering prizes, outsources its innovative project
to the public, who compete to provide solutions.

Since a project often has multiple attributes or dimensions, one crowdsourcing scheme
is to run a sequential contest where multiple sub-contests are launched, each dealing
with one attribute or dimension of the project. For example, in 2013, the Pentagon
launched a contest, through a web portal called Vehicleforge.mil, for the design of an
amphibious vehicle for the U.S. Marines. The first sub-contest, with a one-million-dollar
prize, involved mobility and drive-train subsystems for the vehicle. About six months
later, came a sub-contest for the design of the chassis and other subsystems, a contest with
another one-million-dollar prize (see Lohr 2012). Similar sequential schemes have taken
place on many civilian crowdsourcing websites. For example, Quirky.com, a platform for
crowdsourcing innovations, had the business model of distributing prizes in sub-contests
at various stages of turning an idea into a final product. The stages start with idea
generation, progress to product design, and may conclude with name and logo designs.

An alternative crowdsourcing mechanism is to run a simultaneous contest, in which
every contestant is required to submit his or her solution for the whole project all at
once, even though the project may require contestants to deal with problems in differ-
ent attributes. For example, a class of so-called “reduction-to-practice” challenges on

4
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InnoCentive.com, a leading innovation crowdsourcing platform, requires contestants to
submit a prototype that shows an idea in actual practice, in other words, an aggregate
solution that combines theoretical work of generating ideas and practical work of pre-
senting physical evidence. For another example, right after the sequential contest for
the military vehicle, the Pentagon launched a contest with a two-million-dollar prize in
2014. In contrast to the sequential contest held in 2013, this simultaneous contest re-
quires contestants to submit a single solution for an entire vehicle (see Lohr 2012). One
would assume that the sequential mechanism has the benefit of allowing the best for each
aspect to build on the preceding best, thus leading to an overall best solution. Thus it
is puzzling why the Pentagon switched to the simultaneous mechanism after using the
sequential mechanism.

Motivated by the Pentagon example, we study the optimal crowdsourcing contest
design for projects with multiple attributes. We consider two alternative mechanisms
that can be potentially implemented by the contest organizer, referred to as the firm
thereafter. One is to run a simultaneous contest where the best solution is chosen from
the aggregate solutions submitted by contestants. The other is to run multiple sequential
sub-contests, each dealing with one attribute of the project; the final design is made up
of the best design for each dimension.

Our analysis shows that, other things being equal, there are two opposing forces af-
fecting the comparison between the two contest mechanisms. On the one hand, since the
sub-contests of the sequential contest each focus on a different attribute of the project,
the best aggregate performance is made up of the best performance on those attributes.
However, in the simultaneous contest, contestants submit a single solution for all the
attributes; thus the best performance is the one submitted by a single contestant. There-
fore, the combination of the best performance on different attributes in the sequential
contest is more likely to have a high value than the best performance in the simultane-
ous contest. We call this, the combination effect. On the other hand, the contestants’
effort depends on the incentive provided by the size of the prize and the risk of failure in
the contest. In a winner-takes-all contest, all contestants incur a cost by making effort
but gain nothing, except the winner. Thus, given the same amount of winner’s reward,
with a larger risk of failure in the contest, contestants tend to make less effort. In the
simultaneous contest, the random factors that affect the performance or evaluation cri-
terion across multiple attributes have been pooled together in the solutions provided by
contestants. In view of a lower risk of failure relative to the same amount of reward,
contestants have more incentive to exert an effort in each dimension in the simultaneous
contest than in the sequential one. This is an intuitive explanation from an individual
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contestant’s perspective, and the exact reasoning is more involved as contestants compete
with each other and need to take into account competitors’ behavior. We call this the
pooling effect driven by the pooling of multiple performances subject to random shocks
across different attributes in the simultaneous contest. We show that “pooling,” as a
common theme in the operations literature (see, e.g., Bimpikis and Markakis 2015), has
a notable application in the crowdsourcing contest design.

As a result, the comparison of the expected best performances in the two contest
mechanisms boils down to a comparison of those two opposing effects.1 The pooling
effect occurs because of the difference in the incentives (rewards and risks) between the
simultaneous and sequential contests, due to the different composition of the amount of
the prize and the associated risk. We find that the magnitude of the pooling effect is
influenced by the difficulty level of the project, which is captured by the curvature of the
cost function. The latter reveals the relationship between effort making and its associated
cost. If a project is relatively difficult, the contestants tend to make little effort since
making a large effort will incur a significant cost. Due to little effort making for a difficult
project, the difference in incentives is responsible for a small difference in effort between
the two contest mechanisms. Hence, the pooling effect is relatively weak and can be easily
dominated by the combination effect, which is not affected by the level of difficulty. As
a result, the sequential contest tends to be optimal. On the other hand, if a project is
relatively simple, contestants tend to make a considerable effort because it does not cost
very much to do so; thus the difference in incentives between the two contest mechanisms
can cause a large difference in the level of effort. Therefore, the pooling effect may be
more likely to dominate the combination effect, and the simultaneous contest tends to
be optimal.

We enhance our key insights by further exploring the comparison in the following
directions. First, given the exogenously determined prize allocation in the base model,
we examine the optimal allocation of prizes across sub-contests in the sequential contest,
which can be viewed as the guided effort allocation by the firm, as opposed to the
self-regulated effort allocation by contestants themselves in the simultaneous contest.
The optimal allocation of prizes depends on the difficulty levels in different attributes.
To induce effort making by contestants, the firm allocates a larger prize to the easier
attribute. If the difficulty is sufficiently different across attributes, the sequential contest
with the optimal prize allocation is more efficient in motivating contestants to make
efforts than the simultaneous contest, and hence it performs better. Otherwise, the
simultaneous contest may perform better.

1In the absence of random factors, the sequential mechanism always weakly dominates.
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Second, besides the two-person case that we examine in the base model for simplicity,
we show that in the multiple-person model the interplay of the combination and pooling
effects remains and all results carry over. Moreover, we investigate the magnitude of the
combination effect for different numbers of contestants. We find that a greater number
of contestants improves the combination effect but may not affect the pooling effect.
Under some conditions, there exists a threshold for the number of contestants above
which the combination effect dominates the pooling effect and the sequential contest is
optimal, and below which the combination effect is dominated by the pooling effect and
the simultaneous contest is optimal.

Finally, we examine the case in which contestants are heterogeneous in their expertise
along different attributes but with the same aggregate expertise. We find that if the
expertise across attributes is not too heterogeneous, for the project that is sufficiently
difficult, the sequential contest is optimal, and for the project that is sufficiently easy,
the simultaneous contest is optimal. These insights are consistent with our results from
the base model.

2.2 Literature Review

The modeling of contestants’ behavior has been an active research area in economics. It is
also gaining traction in operations management, as part of managing the crowdsourcing of
goods and services. There are many different models in contest theory, such as the random
factor model, all-pay auction model, random trials model, and Tullock contest. Konrad
(2007) conducts a comprehensive survey of those models. With the random factor model
in which a contestant’s performance is made up of his effort and a random factor, Lazear
and Rosen (1981) show that a contestant’s effort depends on the incentive provided by
the prize and the cost incurred by exerting effort. In contrast to the traditional studies,
we examine the design of contest with multiple attributes. In our sequential contest,
each sub-contest focuses on one attribute of the project, and each can be viewed as a
random factor model. However, in the simultaneous contest, we introduce the multi-
dimensional, single-shot contest model in which contestants self-allocate their efforts to
multiple dimensions and submit an aggregate solution simultaneously.

One of the main research questions in the contest design is how to design the optimal
incentive scheme by allocating the total prize to contestants whose performance can be
ranked. Rosen (1986) examines the elimination contest and finds that a large enough
prize is needed for the best performer. Kalra and Shi (2001) show that the effort made
by an individual contestant decreases in the number of contestants or the uncertainty



www.manaraa.com

Chapter 2. Simultaneous vs. Sequential Crowdsourcing Contests 8

in the contest. If several contestants can be rewarded, the rank-order contest (i.e., a
contestant with a better performance is awarded a larger prize) dominates the multiple-
winner contest (i.e., several top contestants share the total prize equally even though their
performance is different). The authors also consider different risk attitudes of contestants.
They show that if contestants are risk-neutral, the “winner-takes-all” (WTA) (i.e., the
best performer is awarded the total prize) becomes optimal. Moldovanu and Sela (2001)
use the all-pay auction model to show that if the cost function is concave or not too
convex, the WTA is optimal. Terwiesch and Xu (2008) show that the WTA is always
optimal for the random factor model (referred to as a model of “ideation project” in
their paper) but may or may not be optimal for the all-pay auction model (referred to
as a model of “expertise-based project”). Ales et al. (2016b) combine the random trials
and random factor models and find that the WTA is optimal if and only if the benefit
of additional effort for increasing the probability of becoming the winner is greater than
that for increasing the probability of attaining other ranks. Furthermore, they show that
the WTA is optimal if the participation of contestants is guaranteed and the density
function of the random factor is log-concave. Stouras et al. (2016) study service contest
design in an on-demand service context where agents are ranked based on their service
performance and higher performers receive priority over incoming service requests. The
authors show that a coarse partition of priority classes, such as two priority classes, can
be optimal. In contrast to the one-dimensional contest models, we consider a sequential
contest as two parallel sub-contests with each focusing on one attribute of the project.
We assume that the firm uses the WTA scheme in all sub-contests, since the WTA scheme
has been proved to be optimal in most circumstances, especially with our assumption
that the random factor is symmetric and log-concave. We also examine the optimal
allocation of prizes by the firm in the sequential contest with the objective of achieving
the best aggregated performance combined with the best performances from sub-contests.

Another research question is how the number of contestants affects the contestants’
behavior. Taylor (1995) examines a contest model in which each contestant conducts
random trials to find his best shot that can meet a pre-determined level. The author show
that an open entry contest is not optimal since it reduces the effort of contestants in the
equilibrium. Fullerton and McAfee (1999) suggest restricting the number of contestants
and using the auctioning method to select the two best-qualified contestants to compete.
Later, Che and Gale (2003) show that in designing the contest for procuring innovations,
it is optimal to let the two most efficient innovators participate and compete, and to
handicap the more efficient one if the contestants are asymmetric. All of those studies
emphasize the role of random factors in the contest as we do, and they suggest that the
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open entry contest may not be optimal so that the firm needs to restrict the number
of contestants. With a different model setup, Terwiesch and Xu (2008) show that more
contestants intensify the competition and thus lower the individual effort, but meanwhile
the best performance can be enhanced by the diversity of contestants. In keeping with
their result, Boudreau et al. (2011) show empirically that there is an effort-reducing
effect by adding contestants. Ales et al. (2016a) use the random factor model in which
the random factor follows a general distribution. They find that the effort-reducing effect
may or may not exist, depending on the properties of the random factor’s distribution.
We examine both contest mechanisms with an exogenous number of contestants, to stay
focused on the comparison between the two alternative mechanisms. We show that
the interplay of the two opposing effects exists for any number of contestants and then
investigate comparative statics on the number of contestants. Under some conditions, if
the number of contestants is small enough, the simultaneous contest tends to be optimal,
and if the number of contestants is large enough, the sequential contest tends to be
optimal.

Some work examines the contestants’ behavior when there are a series of contests.
One stream of those studies considers static games in which contestants’ behavior in
different competitions is independent. Moldovanu and Sela (2006) study a tournament
in which contestants are split among several competitions whose winners compete against
one another in the final round. Konrad and Kovenock (2009) examine the equilibrium
strategies in a series of competitions, in which in addition to the prize offered for each
competition, there is a grand prize for overall performance. DiPalantino and Vojnovic
(2009) consider a sequence of crowdsouricng contests where contestants can choose which
contest(s) to enter. Though the three papers mentioned above are similar to ours in
that the contest designer splits the contest into several sub-contests, their sub-contests
are designed for selecting the two best contestants to compete in the final (e.g., NBA
Playoffs), or for evaluating the total performance (e.g., English Premier League), or
corresponding to different projects (e.g., Yahoo Answers). The sequential contest in our
context refers to multiple sub-contests dealing with different attributes of a project (e.g.,
the Pentagan’s example), and those sub-contests can have different cost functions and
prizes.

The other stream of literature on multiple competitions focuses on the dynamic game
in which the contestants’ behavior in those competitions is correlated. Those paper-
s mainly explore the strategic disclosure of information (on the contestants’ progress)
by the firm or by contestants themselves in the process of the multi-stage competition.
Some papers study the effects of information disclosure among contestants in the R&D
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competition (e.g., Harris and Vickers 1987, Choi 1991, Malueg and Tsutsui 1997, and
Yildirim 2005). Perhaps the work most closely related to ours is on information disclo-
sure by the contest organizer. The contest organizer can set some intermediate prizes as
milestones throughout the process so that some contestants’ performance will be revealed
(e.g., Goltsman and Mukherjee 2011, Bimpikis et al. 2014 and Halac et al. 2016). Those
studies characterize the strategic behavior of contestants in the intermediate stages of
the contest and explore the optimal information disclosure strategies of the firm in antic-
ipation of that strategic behavior. Jiang et al. (2016) run simulations based on empirical
estimations and show that the disclosure of the evaluations of the performance of contes-
tants throughout the contest may not be optimal but that the disclosure of those evalu-
ations at a later time may lead to a better overall contest outcome. The sub-contests in
our sequential contest can be different from “milestones” in their traditional sense. Our
sub-contests focus on different attributes, and later sub-contests are built on the best
outcome of previous sub-contests. Our contest has the feature that allows contestants
to “cooperate” whereas the mechanisms in the aforementioned papers do not allow such
“cooperation.” The presence of multiple attributes in the contest is a unique feature of
our model that has not been studied before. This feature makes possible a comparison
between two alternative mechanisms: simultaneous and sequential contests. From a d-
ifferent angle, Acemoglu et al. (2014) emphasize that the exact difficulties of innovation
tasks may not be known in advance. The authors take a mechanism design approach and
show that the solution is a dynamic pricing mechanism that induces workers to self-select
into different skill hierarchical layers.

Some work compares the simultaneous and sequential moves by agents in solving other
related management problems. Hausch (1986) considers the situation where the seller can
choose between two mechanisms: auctioning two identical objects at once or launching
two auctions with each selling one object. The author shows that either mechanism can
be optimal depending on the strategic behavior of bidders. Hu et al. (2013) compare
the simultaneous and sequential group-buying mechanisms. They examine a two-period
model in which consumers make sign-up decisions. The firm decides whether to disclose
the number of sign-ups in the first period to the consumers arriving in the second period.
They show that the sequential mechanism has a greater chance than the simultaneous
mechanism of reaching the pre-determined threshold of the number of sign-ups.

Finally, there are two main criteria for evaluating the contest in the literature: ex-
pected best performance and expected average performance. Some studies investigate
the average performance; see, e.g., Kalra and Shi (2001) and Moldovanu and Sela (2001).
This criterion is appropriate for the project such as the sales contest. The benefit for the
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firm that launches a sales contest is the total contributions made by all the contestants.
Thus, the average performance measures the quality of a contest for a given number of
contestants. Some other studies evaluate the contest on the basis of the expected best
performance as well as the expected average performance; see, e.g., Terwiesch and Xu
(2008) and Körpeoğlu and Cho (2017). The criterion of the expected best performance
is better suited to a project like a research or brainstorming contest. There, a single
outstanding solution can be more valuable than thousands of mediocre ones. Thus the
expected best performance is the measure for evaluating those innovation contests, and
how to enhance the best performance is of vital importance. We examine both the ex-
pected average performance and expected best performance in a comparison of those two
contest mechanisms. However, the two opposing effects that we characterize exist when
we identify the expected best performance, whereas only one effect, the pooling effect,
exists when we identify the expected average performance. Our sequential contest resem-
bles the hybrid structure of idea generation studied by Girotra et al. (2010) who focus on
the best performance criterion. They show with a laboratory experiment that the hybrid
structure, in which individuals first work independently and then work together, is able
to generate more and better ideas than the team structure, in which the group works
together in time and space. In our sequential contest, contestants work independently in
each sub-contest, and the performances from sub-contests can be “assembled” to form a
final solution. The main difference is that the crowdsourcing contest typically faces the
general public who cannot work together and involves with monetary incentive that is
likely absent in brainstorming within an organization.

2.3 Model Setup

In this section, we develop a base model for examining contestants’ behavior in crowd-
sourcing contests with multiple attributes. The firm outsources tasks to the public, and
contestants make efforts to win a prize. Let A denote the total prize of the project. The
number of contestants is n ≥ 2, which is exogenously given. In other words, contestants
do not endogenously make the entry decision, and they may incur a negative expected
payoff. A contest with a fixed number of contestants is commonly seen in the litera-
ture (e.g., Lazear and Rosen 1981, Moldovanu and Sela 2001, 2006). It is also common
in practice; for example, an employer may require all its employees to participate in
a brainstorming contest. We discuss the impact of endogenized entry decisions on the
comparison between the two alternative mechanisms in Section 2.5.2.

We consider a project with multiple attributes. Without loss of generality, we assume



www.manaraa.com

Chapter 2. Simultaneous vs. Sequential Crowdsourcing Contests 12

that the project consists of two attributes, indexed by 1 and 2. In each attribute, the
performance of a contestant is made up of two additive components. The first component
is the effort level. The contestant decides his effort levels e1 and e2, respectively in
those two attributes, depending on the incentives. The second component is the random
factor. The problem solving in innovation is often random. The random factors exist
in the projects with unclear standards or projects in which contestants have random
performances. For example, a logo-designing project on “99designs” may have unclear
criteria because the judgers have undisclosed artistic tastes. Therefore, it is unclear
how a submission will be rated. Moreover, the design work could depend highly on a
designer’s personal experience, random inspirations, or the designing environment; thus
performance itself can be random.

There are random factors along the two attributes, denoted by ε1 and ε2 respectively.
We assume that the two random factors have the same distribution with the cumulative
density function (CDF) Ψ(·) and probability density function (PDF) ψ(·), which are
common knowledge. (The qualitative insights would not change for the case in which
random factors along the two attributes follow different distributions.) We assume that
the random factors along the two attributes are independent, and they are identical and
independent among all the contestants. Furthermore, we assume that ψ(·) is symmetric
and log-concave with mean 0 and standard deviation σ > 0. The condition of symmetric
log-concavity can be satisfied by commonly used distributions such as normal, logistic
and uniform distributions.

The performance in each attribute is the sum of the corresponding effort and random
factor. This additive form of individual performance in a contest is commonly seen in
the literature; see, e.g., Lazear and Rosen (1981); Kalra and Shi (2001); Terwiesch and
Xu (2008) and Ales et al. (2016a). We use subscript i to denote a specific contestant and
superscript l to denote a specific attribute. If contestant i makes effort eli, l = 1, 2, the
performance of contestant i in those two attributes is given by

V l
i = eli + εli.

2

The cost of exerting effort can be considered in the form of time consumption or

2Some studies, e.g., Kalra and Shi (2001), Terwiesch and Xu (2008), and Ales et al. (2016a), assume
the performance in the form of V = r(e) + ε, where r(·) is a concave function. Such a form of per-
formance, together with the linear cost function, guarantees that the first-order condition characterizes
the equilibrium strategy. With such a form, the effort is assumed to be non-negative, though r(e) may
be negative. For simplicity, we do not impose the non-negativity constraint on the effort. However,
our model can be adapted to the performance form of r(e) + ε, e ≥ 0, with an appropriate defined
performance function r(·).
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monetary investment. Assume that cost functions along two attributes are, respectively,
C1(·) and C2(·), which can be different. They are common knowledge. Moreover, we
assume that C l′(·) > 0, C l′′(·) > 0, l = 1, 2, the same as in Stouras et al. (2016). This
assumption is also consistent with Terwiesch and Xu (2008) and Ales et al. (2016a). They
assume a strictly increasing and strictly concave performance function that is equivalent
to a strictly increasing and strictly convex cost function.

We assume that all the contests adopt a WTA scheme. Previous studies have found
that WTA is optimal for a single contest in most circumstances. For example, Moldovanu
and Sela (2001) demonstrate that WTA is optimal when the cost function is concave or
not convex enough. Terwiesch and Xu (2008) show that WTA is always optimal provided
that the performance is made up with the effort and random factor, and it may be optimal
for other forms. Ales et al. (2016b) show that the WTA is optimal if the participation
of contestants is guaranteed and the PDF of the random factor is log-concave.

2.3.1 Sequential Contest

In the sequential contest, the firm launches two sub-contests (indexed by 1 and 2), each
of which focuses on one attribute of the project. It allocates the total prize A to two
sub-contests with an exogenous weight w ∈ (0, 1); hence prizes in those two sub-contests
are A1 = wA and A2 = (1 − w)A. Here we allow the weight w to be arbitrary. In
Section 2.4.5, we will discuss the optimal allocation of prizes in the sequential contest,
i.e., endogenizing the weight w.3

Furthermore, contestant i’s performance in sub-contests 1 and 2 are V 1
i and V 2

i respec-
tively. The total performance of contestant i is in the additive form of the performance in
each sub-contest, V seq

i = V 1
i + V 2

i . However, since the winners in those two sub-contests
may be different, the realization of V seq

i for any contestant i may not be the best total
performance in the sequential contest. Moreover, the performance along the two at-
tributes may have different levels of importance in the total performance. Nevertheless,
since we do allow different awards and different cost functions in those two sub-contests,
it is without loss of generality to normalize the relative importance of performances to
1, by changing the allocation of prizes and cost functions.

3If A1 > A2, A2 in our context is not the so-called “second prize” in contest theory. In the previous
studies, the second prize refers to a small prize awarded to the contestant whose total outcome ranks
in the second place. Those studies are intended to solve the problem whether WTA or some other
rewarding scheme is optimal for the firm (see, e.g., Kalra and Shi 2001, Moldovanu and Sela 2001, and
Terwiesch and Xu 2008). In our context, a contestant may win the first sub-contest but lose the second
one. While sub-contests focus on different aspects of the project, a contestant who ranks first in the
second sub-contest wins the prize A2.
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In sub-contest l, l = 1, 2, the payoff to contestant i is

uli(eli) =

 Al − C l(eli) if i wins,
−C l(eli) if i loses.

This mechanism has been widely adopted in the contest theory literature that assumes
the WTA scheme a priori (e.g., Taylor 1995 and Fullerton and McAfee 1999). Note that in
our model setting contestants are all a priori identical with the same random factors and
cost functions. In Section 2.6, we discuss contestants with heterogeneous cost functions.

2.3.2 Simultaneous Contest

In the simultaneous contest, the firm launches a single contest to collect solutions, so the
performance for contestant i is the aggregation of all performance along two attributes,
denoted by V sim

i = V 1
i + V 2

i = (e1
i + ε1i ) + (e2

i + ε2i ). Unlike in the sequential contest,
contestants make an aggregate submission instead of a solution for each sub-contest;
therefore the best performance in the simultaneous contest is the realization of V sim

i if
contestant i is the winner. Since the contestant with the best performance wins the grand
prize A, the payoff to contestant i is

usimi (e1
i , e

2
i ) =

 A− C1(e1
i )− C2(e2

i ) if i wins,
−C1(e1

i )− C2(e2
i ) if i loses.

2.4 Two-Person Model

In this section, we derive the contestants’ equilibrium behavior in a two-person model.
(In Section 2.5, we consider the n-person model.) Using the characterized behavior, we
then compare the simultaneous and sequential contests.

2.4.1 Sub-Contests in the Sequential Contest

Each sub-contest in the sequential contest can be considered as a single-dimensional
simultaneous contest. The existence of an equilibrium is guaranteed if the expected payoff
function is unimodal (i.e., quasi-concave) in effort over the relevant range. However,
the expected payoff function may not necessarily be unimodal. In Lazear and Rosen
(1981) with the same model setup as ours, a pure equilibrium strategy solution exists
provided that the standard deviation of the random factor is large enough. Moreover,
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Dixit (1987) and Terwiesch and Xu (2008) make an even stronger assumption, namely,
that the expected payoff function is concave in effort. Following the convention, we
assume appropriate assumptions that can guarantee the existence of an equilibrium.

Index the two contestants by i and j. The difference of random factors between two
contestants i and j is denoted by ξl = εli − εlj, l = 1, 2 with PDF g(·) and CDF G(·).
Because εli, εlj independently follow the distribution with mean 0 and standard deviation
σ, the difference ξl has mean 0 and standard deviation

√
2σ. Since the PDF of random

factors ψ(·) is symmetric at 0, so is the PDF g(·). The following lemma characterizes
the contestants’ behavior in the symmetric equilibrium. Since contestants are ex ante
identical, the equilibrium efforts of two contestants are the same.

Lemma 2.1 In the sub-contest l with two contestants, the equilibrium effort is el∗ =
C l′−1(Alg(0)), l = 1, 2.4

Lemma 2.1 has the same characterization of the contestants’ behavior as Lazear and
Rosen (1981). It shows that the effort in the equilibrium increases in the amount of prize.
With a larger prize, contestants have more incentive to exert effort. The quantity g(0)
measures the marginal change in the probability of winning by exerting additional effort
beyond the competitor, which can be interpreted as the risk taken by the contestant for
making an extra effort. The higher the risk, the less effort contestants tend to make in
the equilibrium. If εl, l = 1, 2, follows a normal distribution with standard deviation σ,
then el∗ = C l′−1 (

Al/(
√

2πσ)
)
, and the effort level is determined by the return-risk ratio,

Al/(
√

2πσ). For this case, the equilibrium effort level is decreasing in σ, which measures
the risk associated with exerting extra effort (see more discussion below).

2.4.2 Simultaneous Contest

Contestants in the simultaneous contest make efforts along two dimensions. The con-
testants’ two-dimensional optimization problem can boil down to a single-dimensional
optimization problem, with the help of the following lemma.

Lemma 2.2 (Optimal Effort Allocation by Contestant) The cost function of
the aggregate effort level, resulted from the optimal allocation of efforts on two attributes,
C◦(e◦) = min

e1+e2=e◦
{C1(e1) + C2(e2)}, is a strictly increasing and strictly convex func-

tion. Given the aggregate effort level e◦, the optimal effort allocation (ẽ1, ẽ2) satisfies
C◦′(e◦) = C1′(ẽ1) = C2′(ẽ2).

4If Cl′(·), l = 1, 2 ranges over a bounded support, the symmetric equilibrium effort may be located
at a corner; e.g., el∗ = [Cl′−1

(Alg(0))]+ = 0, which boils down to a trivial case. As a result, we restrict
our attention to the case in which the equilibrium effort is an interior point.
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Lemma 2.2 characterizes the optimal allocation of efforts made by contestants in the
simultaneous contest. It is analogous to the optimal allocation of a fixed budget across
products to maximize the total profit in the economics literature. Given a fixed amount
of aggregate effort, contestants optimally allocate the efforts to two dimensions. The
marginal costs across the two dimensions are equal in the optimal allocation. Otherwise,
say if C1′(e1) > C2′(e2), the contestant can achieve a lower total cost by increasing his
effort in the second attribute but reducing it in the first attribute. Moreover, we show
that the total cost is strictly increasing and strictly convex in the aggregate effort.

Denote the difference of random factors between contestants i and j along the two
dimensions by ξ◦ = ε1i + ε2i − ε1j − ε2j = (ε1i − ε1j) + (ε2i − ε2j) = ξ1 + ξ2. By the symmetric
property of ξ1 and ξ2, the random variable ξ◦ has a symmetric PDF g◦(ξ◦) and a CDF
G◦(ξ◦). Since ξ1 and ξ2 have mean 0 and standard deviation

√
2σ and they are inde-

pendent, their summation ξ◦ has mean 0 and standard deviation 2σ. By Lemma 2.2,
the total cost C◦(e◦) is strictly increasing and strictly convex. Then the derivation of
the equilibrium effort in the simultaneous contest is analogous to what is in Lemma 2.1,
provided the total prize A,

e◦∗ = C◦′
−1 (Ag◦(0)) . (2.1)

In the simultaneous contest, the incentive for contestants to make an effort is the total
prize. The g◦(0) measures the risk, which depends on the two random factors along the
two dimensions.

2.4.3 Performance Comparison

In this subsection, we compare the expected best performances and expected average per-
formances between those two contest mechanisms with two contestants. For the two-
person case, the highest-order statistics with sample size 2 is denoted by the subscript
(2). (For the general case, we denote the highest-order statistic with a sample size n

by subscript (n).) The expected best performances in the sequential and simultaneous
contests are denoted by V seq and V sim, and

V seq = E((e1∗ + ε1)(2)) + E((e2∗ + ε2)(2)),

V sim = E((e◦∗ + ε1 + ε2)(2)).

Denote the difference by
∆ = V seq − V sim.
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Because equilibrium efforts are deterministic (as in the base model, all contestants are
homogeneous; we consider heterogeneous contestants in Section 2.6), we have E((el∗ +
εl)(2)) = el∗ + E(εl(2)), l = 1, 2, and E((e◦∗ + ε1 + ε2)(2)) = e◦∗ + E((ε1 + ε2)(2)). The
difference between the expected best performances can then be decomposed into two
parts as ∆ = ∆e + ∆ε, where

∆e = e1∗ + e2∗ − e◦∗,

∆ε = E(ε1(2)) + E(ε2(2))− E((ε1 + ε2)(2)).

The first part ∆e is the difference in the equilibrium effort levels. The second part ∆ε is
the difference between the expected best random factors.

Lemma 2.3 If n ≥ 2 and εl, l = 1, 2, follows a symmetric and log-concave distribution,

E(ε1(n)) + E(ε2(n)) > E((ε1 + ε2)(n)).

Lemma 2.3 can be simply shown as follows. Denote the realizations of ε1 and ε2

with sample size n by {ε1
1, . . . , ε

1
n} and {ε2

1, . . . , ε
2
n} respectively. Then max{ε1

1, . . . , ε
1
n}+

max{ε2
1, . . . , ε

2
n} ≥ max

i′,i′′∈{1,...,n}
{ε1

i′ + ε2
i′′}. Since such inequality holds for any realization,

E(ε1(n))+E(ε2(n)) ≥ E((ε1 + ε2)(n)). Moreover, Lemma 2.3 holds for more than two persons
and it shows that if random factors follow a symmetric and log-concave distribution, the
strict inequality holds.

Proposition 2.4 (Expected Best Performance: Two-Person) Consider the si-
multaneous and sequential contests with two contestants.

(i) The expected best random factor in the sequential contest is larger than that in the
simultaneous contest, i.e., ∆ε > 0;

(ii) If g◦(0) > max{wg(0), (1 − w)g(0)}, the equilibrium effort in the simultaneous
contest is higher than that in the sequential contest i.e., ∆e < 0;

(iii) The condition in (ii) simplifies to g◦(0) > g(0)/2, if one of the following conditions
holds:
(a) w = 1/2; (b) C1(·) = C2(·) and their derivatives are weakly convex.

The following example shows that the conditions in Proposition 2.4 parts (ii) and (iii)
are satisfied if random factors follow a normal distribution.
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Example 2.1 If εl ∼ N(0, σ), l = 1, 2, by Lemma 2.1, the equilibrium effort for sub-
contest l in the sequential contest is el∗ = C l′−1(Al/(2

√
πσ)). In the simultaneous contest,

ξ◦ = ξ1 + ξ2 follows N(0, 2σ). Thus, g◦(0) = 1/(2
√

2πσ). By (2.1), the equilibrium
effort in the simultaneous contest is e◦∗ = C◦′

−1(A/(2
√

2πσ)). For Proposition 2.4(ii),
the difference between the equilibrium efforts in the two contest mechanisms is ∆e =
C1′−1(wA/(2

√
πσ))+C2′−1((1−w)A/(2

√
πσ))−C1′−1(A/(2

√
2πσ))−C2′−1(A/(2

√
2πσ)).

One sufficient condition for ∆e < 0 is g◦(0) > max{wg(0), (1−w)g(0)}, which is satisfied
if w ∈ (1−

√
2/2,
√

2/2) ≈ (0.29, 0.71). The inequality is due to C l′(·) > 0, l = 1, 2. For
Proposition (iii), the condition g◦(0) > g(0)/2 can be naturally satisfied by the normal
distribution because 2

√
2σ < 4σ.

Proposition 2.4 characterizes two forces that affect the comparison of those two contest
mechanisms. The sequential contest has an advantage in selecting the best performances
mainly driven by the random factors. While the two sub-contests deal with different
attributes of the project, each sub-contest selects the best performance in each attribute.
Given the same effort by all the contestants, the sequential contest combines the per-
formances with the best realizations of random factors in those two sub-contests. The
aggregated best performance in the sequential mechanism is made up of the best real-
izations along the two attributes, and is more likely to have a high value. Moreover, the
best solutions in the two sub-contests may be provided by different contestants. However,
in the simultaneous contest, the contestants’ performance depends on the sum of those
random factors to the same individual; thus the sum of the random factors across the
two attributes is less extreme. Then the sum of the most extreme random factors across
the two sub-contests is larger than the extreme of the aggregated random factors in the
simultaneous contest. As the old saying goes, “two heads are better than one.” Since the
sequential contest combines the best performance from each sub-contest, we call this the
combination effect.

The simultaneous contest encourages a greater effort in the equilibrium under a mild
sufficient condition in Proposition 2.4(ii), i.e., g◦(0) > max{wg(0), (1 − w)g(0)}. We
begin our discussion by considering a special case as in Proposition 2.4(iii)(a), in which
the firm evenly allocates prizes into two sub-contests, w = 1/2. If εl ∼ N(0, σ), l =
1, 2, the condition g◦(0) > g(0)/2 can naturally hold since 2

√
2σ < 4σ, which ensures

∆e < 0. In each sub-contest of the sequential contest, the return for the winner is one-
half of the total prize. Since the prize encourages contestants to make an effort, the
effort increases in the amount of prize. However, making efforts also has its risk. The
risk can be measured by the marginal change in the probability of winning as a result
of exerting additional effort, and it depends on the random factor. In the symmetric
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equilibrium, both contestants follow the same strategy, thus the winning probability for
each of them is 1/2, i.e., G(0) = 1/2. Then g(0) measures the marginal change of the
winning probability by exerting additional effort beyond the competitor, in other words,
the risk of making extra effort. For a normally distributed random factor, if σ is large,
the extra effort can enhance the winning probability by only a little, which implies that
the contestant takes a high-level risk of failure for making an extra effort. Hence, we
can view the value of σ as the amount of risk that contestants bear when making extra
efforts. Overall, a contestant’s effort in each sub-contest depends on the return-risk ratio,
i.e., A/2 · g(0) = (A/2)/(2

√
πσ). In fact, the larger the ratio, the greater incentive the

contestant has to make an effort. Hence, seeing a larger return-risk ratio, the contestant
makes more efforts in equilibrium.

In the simultaneous contest, the contestant submits an aggregate solution of two at-
tributes in order to win the whole prize. Therefore, if the contestant wins, the return
for his efforts in each attribute is the whole prize. As in the above analysis in each sub-
contest of the sequential contest, in the simultaneous contest the contestant makes efforts
in each attribute, taking into account not only the reward but also the risk. The risk in
the simultaneous contest can also be measured by the marginal change of winning prob-
ability by exerting extra effort beyond the competitor, which now depends on the sum of
random factors across the two attributes. If random factors are distributed normally with
standard deviation σ, the summation of two random factors has the standard deviation
√

2σ. Thus, the effort in each attribute relies on the corresponding return-risk ratio; i.e.,
A · g◦(0) = A/(2

√
2πσ). Since the return-risk ratio is higher for each attribute in the

simultaneous contest than in the sequential contest, i.e., A/(2
√

2πσ) > (A/2)/(2
√
πσ),

the effort for each attribute is higher in the simultaneous contest. Figure 2.1 illustrates
the return-risk ratio in the equilibrium in each attribute by letting A = 1, w = 1/2 and
εl ∼ N(0, σ), l = 1, 2. In the equilibrium, the return-risk ratio is greater in the simul-
taneous contest than in the sequential contest. This implies that the contestant would
make a greater effort in the simultaneous contest when w = 1/2 than in the sequential
contest.A = 1, w = 1/2, εl ∼ N(0, σ), l = 1, 2, g(0) = 1/(2

√
πσ) and g◦(0) = 1/(2

√
2πσ).

An explanation in plain words may be that if a contestant aims to win the whole prize
in the sequential contest, he has to be the winner in both sub-contests, and that could be
very difficult. However, in order to win the simultaneous contest, the contestant need not
have the best performance in each attribute, but only the best total performance. That
is to say, his not-so-great performance due to the random factor in one attribute can be
compensated by his excellent performance in another attribute. Given the same return,
the pooling of random factors has the result that the return-risk ratio for a contestant
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Figure 2.1: Return-risk ratio in the equilibrium

in each attribute of the simultaneous contest is greater than that in each sub-contest of
the sequential contest. Since the contestant makes a greater effort with a higher return-
risk ratio, the effort for each attribute is greater in the simultaneous contest than in the
sequential contest; we call this, the pooling effect.

For a general prize allocation w, if w 6= 1/2, the return-risk ratios in the two sub-
contests of the sequential contest are different because the returns are different in those
sub-contests; i.e., wAg(0) 6= (1 − w)Ag(0). Proposition 2.4(ii) allows the cost functions
along the two attributes to be different and the prize allocation in the sequential contest
to be general; i.e., w ∈ (0, 1). For a general prize allocation w, the sufficient condition
g◦(0) > max{wg(0), (1 − w)g(0)} guarantees that the effort in each attribute of the
simultaneous contest is greater than that in each sub-contest of the sequential contest.

The effort not only depends on the return-risk ratio, but also on the marginal cost
function. Even though the return-risk ratio along the two attributes of the simultaneous
contest is the same, the effort can be different due to the different cost functions along
the two attributes. By allowing the cost functions to be identical and their derivative
function to be convex, Proposition 2.4(iii)(b) shows that the sufficient condition for ∆e <

0 becomes as simple as g◦(0) > g(0)/2, and can be naturally satisfied by a normal
distribution without any assumption on the prize allocation fraction w. The condition
that C l′(·), l = 1, 2, is convex can be satisfied by many cost functions, e.g., the exponential
and quadratic form of the cost functions.

Many studies in the literature examine the expected average performance, e.g., Kalra
and Shi (2001), Moldovanu and Sela (2001) and Terwiesch and Xu (2008). Since con-
testants are ex ante identical, the expected average performance is equivalent to the
expected individual performance in our context. In some projects, e.g., a sales contest,
every individual contestant’s performance matters for the firm. The following corollary
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compares the two contest mechanisms for each contestant’s performance.

Corollary 2.5 (Individual Performance) For any contestant i, the performance in
the simultaneous contest first-order stochastically dominates the performance in the se-
quential contest, i.e., V sim

i ≥st V seq
i , if g◦(0) ≥ max{wg(0), (1− w)g(0)}.

Corollary 2.5 shows that the performance of an individual contestant is more likely to
be better in the simultaneous contest than in the sequential contest. By V sim

i ≥st V seq
i ,

we immediately have E(V sim
i ) ≥ E(V seq

i ). In contrast to the expected best performance,
the combination effect does not play a role in the expected individual performance. For
each given individual, the expected performance only relies on the equilibrium effort.
With the pooling effect prevailing, the expected individual performance is higher in the
simultaneous contest than in the sequential contest.

2.4.4 Curvature of Cost Functions

By the previous analysis, the comparison of the two contest mechanisms comes down to
the comparison of the two opposing effects, combination and pooling effects. The mag-
nitude of the combination effect has nothing to do with the cost functions, and depends
only on the random factors. However, the magnitude of the pooling effect depends on the
convexity of the cost functions along the two attributes. In this subsection, we examine
the comparative statics on the degree of convexity (curvature) of the cost functions. The
degree is measured by the Arrow-Pratt coefficient (see Mas-Colell et al. 1995). The degree
of the curvature of the cost function has been used to discuss other problems in contest
theory. For example, Moldovanu and Sela (2001) show that the Arrow-Pratt coefficient
of the cost function determines whether WTA is optimal. For simplicity, we assume that
the cost functions are in the exponential form, C l(el) = exp(ρlel), ρl > 0, l = 1, 2, which
allow us to use a single parameter to represent the Arrow-Pratt coefficient,

C l′′(e)
C l′(e)

= ρl
2 exp(ρle)
ρl exp(ρle) = ρl (degree of convexity),

where l = 1, 2. Similar insights can be derived for the general form of cost functions. We
compare those two contest mechanisms for different degrees of convexity.

Proposition 2.6 Assume the exponential cost form. If g◦(0) > max{wg(0), (1−w)g(0)},
there exist two thresholds ρ ≥ ρ > 0 such that if ρ1, ρ2 ≥ ρ, the sequential contest
dominates the simultaneous contest, i.e., ∆ ≥ 0; and if ρ1, ρ2 ≤ ρ, the simultaneous
contest dominates the sequential contest, i.e., ∆ ≤ 0. Moreover, assume ρ1 = ρ2 = ρ.
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For ρ, there exists a threshold ρ̃ > 0 above which the sequential contest is optimal, and
below which the simultaneous contest is optimal.

Proposition 2.6 shows that the comparison of those two forces depends on the curva-
ture of the cost functions. The pooling effect is due to the different incentives provided in
the two contest mechanisms. Given the prizes and random factors, the difference in the
incentives is fixed. However, the magnitude of such difference, which is reflected in the
contestants’ effort, depends on the convexity of the cost functions. The interpretation of
the degree of convexity is that it measures the difficulty level of the project. If the degrees
of convexity of the cost functions are large, the project for those contestants seems to be
difficult since even a little extra effort will lead to a significant increase in cost. Thus the
effort is small in both contest mechanisms. Then the difference in incentives makes little
difference to the effort expended. As a result, the pooling effect will be weak and likely
dominated by the combination effect, which has not been affected by the cost functions.
Hence, the sequential contest tends to be optimal. However, if the degrees of convexity
of those cost functions are small, contestants tend to make a large effort. Thus, the pool-
ing effect will be significant and will likely outweigh the combination effect. Then the
simultaneous contest tends to be optimal. If the cost functions along the two attributes
are identical, i.e., ρ1 = ρ2, there exists a single threshold on the degree of convexity of
the cost functions above which the sequential contest dominates and below which the
simultaneous contest dominates.

Projects on different platforms are of varying difficulty. For example, the questions
on Yahoo Answers or Amazon Mechanical Turk are mostly simple and do not require the
problem solvers to demonstrate a strong ability in data analysis or logical thinking. How-
ever, for platforms such as InnoCentive or Kaggle, the projects are mostly accompanied
with datasets. To solve those problems, contestants may need to search the academic
literature, build mathematical models, and write programs. The heterogeneity of those
platforms in the level of difficulty may lend some support to our results. Multi-stage
questions are rare on platforms such as Yahoo Answers or Amazon Mechanical Turk, but
multi-stage projects are commonly seen on InnoCentive or Kaggle.

2.4.5 Optimal Allocation of Prizes in the Sequential Contest

The difference in equilibrium efforts between two contest mechanisms, ∆e, depends on
the allocation of prizes in the sequential contest. In this subsection, we examine the value
of ∆e under the optimal allocation of prizes by the firm in the sequential contest. Again
for simplicity, we adopt the exponential form of the cost functions, C l(el) = exp(ρlel),
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ρl > 0, l = 1, 2. Define the relative degree of convexity of cost functions along the two
attributes by t = ρ1/ρ2.

Proposition 2.7 Assume the exponential cost form.

(i) The optimal allocation of prizes to the sub-contest 1 in the sequential contest is

w∗ = ρ2

ρ1 + ρ2 = 1
t+ 1 .

(ii) Under the optimal allocation in the sequential contest, there exist t < 1 and t > 1
such that if t ∈ (t, t), ∆e < 0, otherwise ∆e ≥ 0.

Proposition 2.7(i) shows that in the sequential contest, the firm needs to allocate a
larger prize to the easier attribute of the project. For example, if ρ1 < ρ2, it is more
cost-effective for a contestant to make an effort in the sub-contest 1. Thus, sub-contest 1
achieves a higher efficiency in driving effort than sub-contest 2. Because the performance
in those sub-contests are equally important, given a fixed total prize, it is more beneficial
for the firm to allocate a larger prize to sub-contest 1. Moreover, since the cost functions
C l(·), l = 1, 2, are exponential, C l′−1(·), l = 1, 2, is concave, and thus using rewards to
encourage effort has diminishing returns. As a result, even though the efficiency is higher
in the sub-contest 1, the firm does not want to allocate the whole prize to sub-contest 1.
Therefore, the optimal allocation of prizes, w∗, exists as an interior point within (0, 1).

Proposition 2.7(ii) compares the equilibrium efforts between two contest mechanisms
under the optimal allocation of prizes in the sequential contest. In the simultaneous
contest, the firm invests a grand prize in the simultaneous contest, where contestants
optimally allocate their efforts to two dimensions. In the sequential contest, the firm
optimally allocates prizes to two dimensions and contestants optimally react to the in-
centive provided by the size of the prize in each attribute. Our result shows that the
equilibrium effort depends on the relative difficulty of the two attributes. If the difficulty
is similar enough, the total equilibrium effort is larger in the simultaneous contest. Oth-
erwise, the sequential contest has a larger total equilibrium effort. The intuitions are as
follows.

For those scenarios in which the difficulty of the two attributes is far apart, we discuss,
without loss of generality, the case that improving performance is much easier in the
first attribute than in the second; i.e., t is sufficiently small (close to 0). On the one
hand, under the optimal allocation of prizes in the sequential contest, w∗ = 1/(t + 1).
Since t is sufficiently small, the firm allocates most of the prize to sub-contest 1 and
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contestants make a significantly greater effort in sub-contest 1 than in sub-contest 2.
Thus, the total effort in the sequential contest comes mostly from the effort in the sub-
contest 1. Moreover, the contestant can win almost the whole prize by focusing on the
first attribute of the project. On the other hand, in the simultaneous contest, under the
optimal individual allocation of efforts, contestants tend to allocate almost all their efforts
to the first attribute as well because it is much easier than the other one. Thus, the total
effort in the simultaneous contest also relies mainly on the effort in the first attribute.
However, in the simultaneous contest, the contestants’ performance is influenced by the
sum of random factors along the two attributes. Therefore, with almost the same return,
a contestant in the simultaneous contest takes more risks than in sub-contest 1 of the
sequential contest. That is, the return-risk ratio is lower in the simultaneous contest,
and thus less effort is expended in the first attribute of the simultaneous contest than in
sub-contest 1 of the sequential contest. Since the total effort relies largely on the effort in
the first attribute in both contest mechanisms, the sequential contest has a higher total
equilibrium effort than the simultaneous contest. That is, ∆e ≥ 0, which is consistent
with that the sufficient condition in Proposition 2.4(ii) no longer holds under the optimal
prize allocation w∗ for a sufficiently small t. We can apply a similar argument to the
case that it is much easier to improve the performance in the second attribute than in
the first; i.e., t is sufficiently large. In conclusion, if the difficulty is sufficiently different,
∆e ≥ 0. Together with the combination effect, i.e., ∆ε > 0, we have ∆ = ∆e + ∆ε > 0.
That is, the sequential contest dominates the simultaneous contest when the efficiency
of the two attributes, in encouraging the contestants’ efforts, is different enough.

If the difficulty along the two attributes is close to each other (i.e., t is close to 1),
including the case of projects with symmetric attributes, then the total equilibrium effort
is higher in the simultaneous contest than in the sequential contest. That is to say, the
pooling effect sustains (∆e < 0). Then the dominance of those two opposing effects,
pooling and combination effects, depends on the convexity of the cost functions. (A
similar analysis follows from Section 2.4.4).

2.5 Multiple-Person Model

In this section, we compare those two contest mechanisms with a general number of n
contestants. Denote the equilibrium efforts in the sub-contests 1 and 2 of the sequential
contest by e1∗(n) and e2∗(n) respectively. The equilibrium effort in the simultaneous
contest is denoted by e◦∗(n). Thus, the expected best performance in the sequential and
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simultaneous contests can be written as

V seq
n = E((e1∗(n) + ε1)(n)) + E((e2∗(n) + ε2)(n)),

V sim
n = E((e◦∗(n) + ε1 + ε2)(n)).

As in the two-person model, we decompose the difference between the expected best
performance into the difference in effort and the difference contributed by different s-
elections of random factors. That is, ∆n = V seq

n − V sim
n = ∆e

n + ∆ε
n, where ∆e

n =
e1∗(n)+e2∗(n)−e◦∗(n) and ∆ε

n = E(ε1(n))+E(ε2(n))−E((ε1 + ε2)(n)). Note that by Lemma
2.3, the sum of the best realizations of random factors along the two attributes is more
likely to be extreme than the best realization of the sum; i.e., ∆ε

n > 0.

2.5.1 Equilibrium Effort

For the sub-contest l, l = 1, 2, in the sequential contest, suppose that all the contestants
except contestant i make equilibrium effort el∗(n). The winning probability of contestant
i, if he makes effort eli, is

P (i wins with effort eli | others make effort el∗(n)) =
∫ +∞

−∞
Ψ(eli − el∗(n) + εl)n−1ψ(εl)dεl.

For the simultaneous contest, suppose that all the contestants except contestant i make
equilibrium effort e◦∗(n). Denote ε◦ = ε1 + ε2 with PDF ψ◦(ε◦) and CDF Ψ◦(ε◦). The
winning probability of contestant i, if he makes effort e◦i , is

P (i wins with effort e◦i | others make effort e◦∗(n)) =
∫ +∞

−∞
Ψ◦(e◦i − e◦∗(n) + ε◦)n−1ψ◦(ε◦)dε◦.

When eli = el∗(n) and e◦i = e◦∗(n), one can easily verify that those winning probabili-
ties are equal to 1/n since

∫+∞
−∞ Ψ◦(ε◦)n−1ψ◦(ε◦)dε◦ = 1/n. It implies that contestants

have equal chances of winning because they are ex ante identical. With those winning
probabilities, we can characterize the equilibrium efforts for both mechanisms. Define
functions h(·;n) and h◦(·;n) as:

h(εl;n) =
∫ +∞

−∞
(n− 1)Ψ(εl)n−2ψ(εl)2dεl and h◦(ε◦;n) =

∫ +∞

−∞
(n− 1)Ψ◦(ε◦)n−2ψ◦(ε◦)2dε◦.

The functions h(·;n) and h◦(·;n) are well-defined functions that have been examined
in the literature, e.g., the functions Ψ1 in Kalra and Shi (2001), and IN in Ales et al.
(2016a). Since ε1 and ε2 are identical, the same form h(·;n) applies to both dimensions,
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which we can denote by h(ε;n). Those functions measure the marginal change of the
contestant’s probability of winning by exerting additional effort. Note that h(ε; 2) = g(0)
and h◦(ε◦; 2) = g◦(0). We have the following characterizations of equilibrium efforts.

Lemma 2.8 Consider contests with n contestants. The equilibrium effort in sub-contest
l, l = 1, 2, of the sequential contest is el∗(n) = C l′−1 (

Alh(ε;n)
)
. The equilibrium effort

in the simultaneous contest is e◦∗(n) = C◦′
−1 (Ah◦(ε◦;n)).

With Lemma 2.8, we characterize the combination and pooling effects in the n-person
model.

Proposition 2.9 (Expected Best Performance: n-Person)

(i) (Combination effect) ∆ε
n > 0.

(ii) (Pooling effect) If h◦(ε◦;n) > max{wh(ε;n), (1−w)h(ε;n)}, ∆e
n < 0. In particular,

if εl ∼ N(0, σ), l = 1, 2, and w ∈ (1−
√

2/2,
√

2/2), ∆e
n < 0 for any n.

Proposition 2.9(i) is directly implied by Lemma 2.3. For (ii), if h◦(ε◦;n) >
max{wh(ε;n), (1−w)h(ε;n)}, the equilibrium effort is higher in the simultaneous contest
than in the sequential contest; i.e., ∆e

n < 0. Interestingly, if random factors follow a
normal distribution (the arguably most commonly used distribution in the natural and
social sciences), then h◦(ε◦;n)/h(ε;n) = 1/

√
2 for any number of contestants. Further,

if w ∈ (1−
√

2/2,
√

2/2) then ∆e
n < 0. As a special case, if the firm allocates the prizes

equally in the sequential contest, i.e., w = 1/2, then the simultaneous contest achieves
a higher equilibrium effort level. In conclusion, the results in the two-person model can
be carried over to the n-person model. The interplay of those two opposing forces, the
combination effect and pooling effect, still applies in the n-person case.

2.5.2 Number of Contestants

In this subsection, we compare the two contest mechanisms for different numbers of
contestants. The Pentagon’s contest brought together specialized military contractors
for designing a military vehicle. Thus, the number of contestants in the Pentagon’s
project is small compared to the platforms on which projects do not require sophisticated
technique skills, such as InnoCentive or 99designs. On Kaggle, the problem solvers have
been categorized into five tiers by the quality and quantity of their performances: novice,
contributor, expert, master and grandmaster. Interestingly, some contests only allow the
solvers who rank at the expert or higher tier to participate. It can be expected that such
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contests must have fewer participants than the contests that are open to all solvers (we
extend our base model to account for heterogeneous contestants and show that the main
results carry over).

We provide managerial insights on contest design for projects with different numbers
of contestants. By Lemma 2.3, the difference between the expected best random factors
∆ε
n > 0. Now, we discuss how ∆ε

n changes with an increasing number of contestants.

Proposition 2.10 There exists n̄ ≥ 2 such that ∆ε
n is increasing in n ∈ [2, n̄].

It is intuitive that the best performances in both contest mechanisms can be improved
by having more contestants. However, it is not clear which contest mechanism benefits
more from additional contestants. Proposition 2.10 shows that the marginal benefit of
one additional contestant in boosting the expected best random factors is more significant
for the sequential contest than for the simultaneous contest if the number of contestants
is not too large. The intuition is as follows. For both contests, the best performance will
be enhanced only if the additional solution is better than every single one of the solutions
in the existing pool. For the simultaneous contest, contestants submit a single solution
along the two dimensions, so the best performance will be improved if the additional
aggregate solution is better. However, for the sequential contest, the best performance
will be improved if the additional solution in either attribute is better. When the pool
of contestants is small, it is more likely that the additional contestant is doing better
than the existing pool of contestants in one of the attributes than that he is doing better
in the whole project. Thus, if the contestant pool is not too large, the firm can benefit
from obtaining a higher expected best random factors, by having more contestants in the
sequential contest than in the simultaneous contest. When the contestant pool is large,
having more contestants may lead to diminishing returns. Now we compare the two
contest mechanisms in the expected best random factors, when the number of contestants
is sufficiently large.

Proposition 2.11 (i) If ε1 and ε2 have a bounded support [−a, a], lim
n→∞

∆ε
n = 0.

(ii) If ε1 and ε2 are normally distributed, lim
n→∞

∆ε
n =∞.

Proposition 2.11 can be explained as follows. It is intuitive that when the number
of contestants is large enough, the best performance in both contest mechanisms must
be outstanding. Since contestants are ex ante identical, the effort is equal among all the
contestants under each mechanism, so the firm selects the best random factor in each
contest. Therefore, there must be a random factor approaching the upper limit provided
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a sufficiently large number of contestants. It has been well known (see, e.g., David and
Nagaraja 2003, pp. 80, (4.5.1)) that when n is sufficiently large, the expectation of the
highest order statistics is approximately equal to the value of n

n+1th quantile,

E(ε(n)) ≈ Ψ−1
(

n

n+ 1

)
, (2.2)

where the Ψ−1(·) is the quantile function of Ψ(·). When n is large enough, the term n
n+1

approaches 1 and E(ε(n)) approaches the upper limit of the range of the random factor.
When the number of contestants is large enough and the random factors have a

bounded support (e.g., two-sided truncated normal distribution), the expected best ran-
dom factors in the two-contest mechanisms are approximately equal, since they are both
close to the upper bound. However, with normally distributed random factors that
have the unbounded support, the difference between the expected best random factors
approaches infinity when the large pool of contestants grows even larger. Thus, the se-
quential contest can benefit more from an increasing number of contestants than the
simultaneous contest, even when the pool of contestants is already very large. That is,
the combination effect can be infinitely enhanced by more and more contestants.

In general, how the difference between the equilibrium efforts in those contest mech-
anisms, ∆e

n, would change with one additional contestant can be ambiguous. However,
we are able to obtain a clear-cut result for normally distributed random factors and
exponential cost functions.

Proposition 2.12 (Expected Best Performance: Number of Contestants)
Assume the exponential cost form. If εl ∼ N(0, σ), l = 1, 2, and w ∈ (1−

√
2/2,
√

2/2),
∆e
n is a constant for any n, and thus there exists a threshold ñ ≥ 2 on the number of con-

testants, above which the sequential contest is optimal and under which the simultaneous
contest is optimal.

Proposition 2.12 shows that if random factors follow a normal distribution (the ar-
guably most commonly used distribution in the natural and social sciences), then the
simultaneous contest is optimal when the number of contestants is relatively small, and
the sequential contest is optimal when the number of contestants is relatively large. Ales
et al. (2016a) study a one-dimensional contest and show that if the random factor fol-
lows a symmetric log-concave distribution (which the normal distribution satisfies), the
effort is decreasing in the number of contestants (see their Proposition 1). That is be-
cause more contestants intensify the competition and reduce contestants’ incentive to
expend effort. With this result, the effort in both contest mechanisms is decreasing in
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the number of contestants, but the monotonicity of the difference in the levels of effort
may be ambiguous. However, if the random factors follow the normal distribution and
the cost functions are in the exponential form, the difference in effort between the two
contest mechanisms is a fixed value for any number of contestants. Nevertheless, for this
specific case, we show that the difference in random factors is increasing in the number
of contestants, a finding consistent with Propositions 2.10 and 2.11(ii) for the general
case. The combination effect is reinforced by a larger number of contestants while the
pooling effect exists but is not influenced by the number of contestants. Overall, every-
thing else being equal, if the number of contestants is relatively small, the combination
effect is weak and dominated by the pooling effect, and thus the simultaneous contest
is optimal. Otherwise, if the number of contestants is relatively large, the combination
effect becomes significant so that the sequential contest becomes optimal. This result
may partially explain the puzzle of the Pentagon’s switching behavior. Since the number
of contestants may not be large for a military project and that the combination effect is
not significant for a small number of contestants, the simultaneous contest may perform
better than the sequential contest. That may be one reason why the Pentagon switched
to the simultaneous contest after experimenting with the sequential contest. Lastly, when
the entry decisions by the contestants are endogenized, the number of entrants will be
smaller and hence the simultaneous mechanism may tend to be favored. εl ∼ N(0, σ),
C l(el) = exp(ρlel), l = 1, 2, and w = 1

2 .

Figure 2.2: Comparison between the simultaneous and sequential contests

As a summary, Figure 2.2 illustrates the comparison of the two mechanisms depending
on the difficulty level (see Proposition 2.6, which can be easily extended to the n-person
case) and the number of contestants (see Proposition 2.12), for normally distributed
random factors and exponential cost functions.
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2.6 Heterogeneous Contestants

In this section, we consider a two-person model with two expertise types (high and low)
in each attribute. In contrast to the base model in which all the contestants are assumed
to be identical for each attribute, we assume here that contestants are endowed with ex-
pertise xH for the first and xL for the second attribute, or xL for the first and xH for the
second attribute (xH ≥ xL > 0). Here, the aggregate expertise for all the contestants is
the same; i.e., a contestant has either (xL, xH) or (xH , xL) as the expertise along the two
dimensions. This stylized assumption on the constant aggregate expertise being equal to
x◦ = xH + xL is consistent with the common belief that the human beings are created
equally but with different talents. In the simultaneous contest, all the contestants have
the same aggregate expertise, consistent with the base model. The expertise follows a
two-point distribution. Since we have studied the homogeneous expertise in the base
model, the two-point expertise distribution is the most heterogeneous expertise distribu-
tion among the class of distributions that share the same mean and standard deviation.
The probability that a contestant is endowed with (xL, xH) is η1, and the probability
that a contestant is endowed with (xH , xL) is η2, where η1 + η2 = 1. Thus, we generalize
the base model and allow contestants to have different expertise in different attributes.
Allowing general expertise along the two dimensions would not qualitatively change our
main results (see the footnote in the proof of Proposition 2.13).

In the sequential contest, we consider the situation in which the firm does not disclose
the solutions of the first sub-contest during the second sub-contest, and will assemble the
best performances from the two sub-contests at the end. This assumption requires the
final solution to be modular, i.e., the solution can be divided into smaller modules that
can be independently created in each dimension and then assembled. This assumption
may be justified as follows. First, imposing this restriction would not change the results
from our base model, because there all the contestants have an identical expertise, and
nothing needs to be learned from one sub-contest to another. Second, in practice, this
assumption may not be too restrictive, because information disclosure can lead to strate-
gic behavior by contestants and as a result, the firm may have no incentive to do so.
When the contestants’ expertise in the first dimension is correlated with that in the sec-
ond dimension, the revealing of solutions from the first sub-contest may lead to strategic
behavior in both sub-contests. In anticipation of the solutions from the first sub-contest
being revealed, contestants may distort their performance to hide their types in the first
sub-contest; e.g., the contestant with high expertise may pretend to have less expertise.
On learning that others are low-type in the first sub-contest, contestants may not exert
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Figure 2.3: Two-point expertise distribution

their full effort in the second sub-contest. Lastly, for some projects, performance can-
not be evaluated until the solutions along both attributes are collected. For example,
in the Pentagon’s contest, the military agency may only be able to provide feedback
and evaluate performance after obtaining the complete vehicle design.η1 + η2 = 1 and
x◦ = xH + xL.

We assume that the cost functions along the two dimensions are identical in the ex-
ponential form, C(·) = C1(·) = C2(·) = exp(ρx), and moreover, 2g◦(0) > g(0), which is
naturally satisfied by normal distributions. In each sub-contest, every contestant knows
only his own expertise and that his opponents’ expertise is drawn independently from the
two-point distribution (see Figure 2.3). The game is a Bayesian game in the Harsanyi
sense (see Harsanyi 1968) where “types” are defined by contestants’ expertise. In the
symmetric Bayesian equilibrium, contestants’ behavior is determined by their types, re-
gardless of their identities. Hence, we use type H or L to refer to a contestant’s behavior
in the equilibrium. We examine two settings where the expertise affects contestants’
performances in different ways.

2.6.1 Heterogeneous Cost Functions

The first setting is that the expertise results in different efficiencies in making efforts.
For exerting the same amount of effort, the high-type contestant incurs a lower cost than
the low-type contestant. Such a model characterizes the heterogeneity of contestants
in their innovation ability. Contestants with higher talents tend to spend less time
in developing novel ideas. It is appropriate to use the heterogeneous cost model to
characterize contestant behavior for projects that require innovative thinking, such as
research and art designing contests. For each attribute, if a contestant is type i = H,L,
his cost function is C(·)/xi. Similar characterizations have been adopted in Lazear and
Rosen (1981), Moldovanu and Sela (2001) and Fey (2008) with slightly different model
setups.

First, we characterize the contestants’ behavior in equilibrium with a general ηl ∈
(0, 1), l = 1, 2. Second, we examine a special case in which the fractions of both types of



www.manaraa.com

Chapter 2. Simultaneous vs. Sequential Crowdsourcing Contests 32

contestants are equal, i.e., ηl = 1/2. One can easily show that if ηl = 1/2, the optimal
allocation of prizes in the sequential contest isA1 = A2 = A/2 since the prior distributions
of the expertise are the same and the cost functions along the two attributes are also
the same. Thus, we compare the two contest mechanisms under the optimal allocation
of prizes w = 1/2 for ηl = 1/2. Third, for ηl 6= 1/2, there is no closed form solution
for the equilibrium effort and the comparison of the two mechanisms is intractable. We
perform numerical tests in Online Appendix 2.10 and obtain consistent observations with
Proposition 2.13(ii) for ηl = 1/2.

Proposition 2.13 Assume the exponential cost form and consider two contestants.

(i) (Equilibrium effort of different expertise in the sequential contest) In the sub-contest
l, l = 1, 2, there exists an equilibrium such that el∗H ≥ el∗L . If ηl = 1/2, such
equilibrium is unique.

(ii) (Comparison) If ηl = 1/2, and xH and xL are sufficiently close

(xH/xL ∈ [1, (2g◦(0)/g(0))2)), there exist ρ′ and ρ′ such that when ρ ≤ ρ′, the
simultaneous contest is optimal, and when ρ ≥ ρ′, the sequential contest is optimal.

Proposition 2.13(i) shows that at least in one equilibrium, the high-type contestants
exert more effort than the low-type contestants. Since their equilibrium performances
are V l∗

H = el∗H + εl and V l∗
L = el∗L + εl, l = 1, 2, then V l∗

H ≥st V l∗
L because el∗H ≥ el∗L . That is,

the high-type contestants are more likely to have a higher performance than the low-type
contestants. Proposition 2.13(ii) shows that when the high-type and low-type expertise
levels are close enough to each other, if the convexity of the cost function is sufficiently
large, the sequential contest dominates, and if the convexity of the cost functions is
sufficiently small, the simultaneous contest dominates. This result is consistent with
Proposition 2.6 for the case of homogeneous contestants.

2.6.2 Heterogeneous Starting Points

The second setting is that expertise provides different starting points. The performance
of contestant i in sub-contest l, l = 1, 2, is V l

i = xH + eli + εl if he has high exper-
tise, and V l

i = xL + eli + εl if he has low expertise. However, they have the same cost
function. This model characterizes the heterogeneity of contestants in their skill levels
or experience. A skilled programmer may possess several well-developed programming
frameworks. An experienced salesperson may keep in contact with several clients so that
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in the sales contest he can guarantee certain sales volume at the beginning of the competi-
tion. Thus, the heterogeneous starting point model can be implemented in characterizing
the contestants’ behavior for projects that require experience or technical skills, such as
a technology competition and sales contest. Such a characterization has been adopted in
Terwiesch and Xu (2008) and Körpeoğlu and Cho (2017).

As in Proposition 2.13, we characterize the equilibrium efforts made by contestants
with a general ηl ∈ (0, 1). We compare the two contest mechanisms under the optimal
allocation of prizes w = 1/2 for ηl = 1/2. For ηl 6= 1/2, we perform numerical tests in
Online Appendix 2.10 and obtain consistent observations with Proposition 2.14(ii) for
ηl = 1/2.

Proposition 2.14 Assume the exponential cost form and consider two contestants.

(i) (Equilibrium effort of different expertise in the sequential contest) In sub-contest
l, l = 1, 2, there exists an equilibrium such that (a) if ηl < 1/2, e∗H ≥ e∗L; (b) if
ηl > 1/2, el∗H ≤ el∗L ; (c) if ηl = 1/2, el∗H = el∗L . In all of the 3 cases, the expected
equilibrium performances satisfy E(V l∗

H (el∗H)) ≥ E(V l∗
L (el∗L )).

(ii) (Comparison) If ηl = 1/2, and xH and xL are sufficiently close (xH − xL ∈
[0, 2E(ε(2)) − E(ε◦(2)))), there exist ρ′′ and ρ′′ such that when ρ ≤ ρ′′, the simul-
taneous contest is optimal, and when ρ ≥ ρ′′, the sequential contest is optimal.

Proposition 2.14(i) shows that when the probability that high-type contestants will
appear is high (ηl < 1/2), high-type contestants expend greater effort than low-type
contestants. This is because high-type contestants have an inherently better starting
point than low-type contestants. A higher chance of encountering a competitor with
great expertise tends to intensify the competition and motivate the high-type contestant
to make greater efforts. Meanwhile, a low-type contestant expects that there is little
chance of winning because he is more likely to encounter a high-type contestant. As a
result, low-type contestants tend to slack off. Combining the two sides, the performance
of high-type contestant is better than that of low-type contestants.

When the probability that high-type contestants will appear is low (ηl > 1/2), sur-
prisingly, low-type contestants make more effort than high-type contestants. High-type
contestants tend to slack off because they expect there is little chance of encountering
other high-type contestants. Meanwhile, low-type contestants find it more likely that
they will win, and hence they exert more effort. In the literature, with the same mod-
el setup for a one-dimensional contest, Terwiesch and Xu (2008) demonstrate that for
the general n-person case, when contestants are heterogeneous in expertise, contestants
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with higher expertise may make a greater effort. Körpeoğlu and Cho (2017), by using
a numerical test with a Gumbel distribution, show that the result can be reversed, i.e.,
that contestants with higher expertise may exert less effort. With a simple two-point
distribution, we analytically show that the fraction of high or low contestants plays an
important role in how expertise predicts effort, and we provide an intuitive explanation.
Nevertheless, we show that the expected performance of the high-type contestants is still
better than that of low-type contestants, at least in one equilibrium.

Proposition 2.14(ii) is analogous to Proposition 2.13(ii). Under similar conditions, it
shows that if the convexity of the cost functions is large enough, the sequential contest is
optimal, and that if the convexity of the cost functions is small enough, the simultaneous
contest is optimal, which is again consistent with Proposition 2.6.

2.7 Conclusion

We compare the simultaneous and sequential contest mechanisms of crowdsourcing con-
tests for projects with multiple attributes. With the characterization that a contestant’s
aggregate performance is made up of his effort levels and random factors across multiple
dimensions, we find that the comparison comes down to a comparison of two opposing
effects, the combination effect and the pooling effect. In addition, we obtain a set of
managerial insights. First, the magnitude of the pooling effect depends on the difficulty
of the project, i.e., the convexity of the cost functions. If the project is difficult, the
sequential contest tends to be optimal, and if the project is simple, the simultaneous
contest tends to be optimal. Second, we examine the optimal allocation of prizes across
multiple sub-contests of the sequential contest. When the difficulty of attributes is d-
ifferent enough, the sequential contest in which the firm optimally allocates prizes to
induce effort dominates the simultaneous contest in which contestants self-regulate their
own effort in view of the big prize. Otherwise, the simultaneous contest may perform
better. Third, we generalize our base model to consider the contest with more than
two contestants, and investigate how the number of contestants affects the comparison.
We find that the interplay of those two opposing effects exists with a general number of
contestants. Under some conditions, if the number of contestants is large enough, the
sequential contest tends to be optimal, and if the number of contestants is small enough,
the simultaneous contest tends to be optimal. Lastly, in addition to the base model,
which assumes all the contestants are homogeneous, we show that to a large extent, the
results in considering the heterogeneous contestants are consistent with what we find in
the base model.
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Pooling is a theme widely seen in the operations literature. In the simultaneous con-
test, pooling of random factors reduces risk in effort making and incentivizes contestants
to expend effort. Intuitively, the benefit of pooling, in favor of the simultaneous con-
test, increases with the number of attributes and the variability in the random factors.
However, the combination effect, in favor of the sequential contest, is also expected to
increase in those two factors. Still, the comparison of the two contest mechanisms comes
down to the relative strength of the combination effect and pooling effect, which we leave
for future research.

There are several limitations to our model. First, we assume that the random factors
along different dimensions follow identical and independent distributions. Future research
can consider correlated random factors across attributes. Second, in considering the het-
erogeneous contestants, we examine a special case in which contestants are endowed with
heterogeneous expertise along different attributes, but with the same aggregate exper-
tise. In other words, we assume that a contestant’s expertise along different attributes is
perfectly negatively correlated. Future research may consider more generally distributed
joint expertise across attributes. Lastly, in the sequential contest with heterogeneous
contestants, we assume that the firm does not disclose the performance of contestants in
the earlier sub-contests. For those projects in which earlier performance can enhance the
later performance, the firm may have an incentive to reveal earlier performance. How-
ever, such information disclosure may also induce strategic behavior among contestants.
As a result, its overall effect on the comparison between the two mechanisms is not clear.
Despite those limitations, our stylized model captures the core tradeoff in comparison
of the two contest mechanisms for projects with multiple attributes and generates in-
sights that seem consistent with many practical observations. Our results can be used to
provide guidelines in designing crowdsourcing contests with multiple attributes.

2.8 Proofs.

Proof of Lemma 2.2. Consider the optimization problem below:

min
e1,e2

C1(e1) + C2(e2) s.t. e1 + e2 = e◦.

The solution to this problem can be typically found by writing the Lagrangean,
L(e1, e2, e◦;λ) = C1(e1) + C2(e2) + λ(e◦ − e1 − e2), and the FOCs are

∂L

∂e1 = C1′(ẽ1)− λ̃ = 0 (3a), ∂L

∂e2 = C2′(ẽ2)− λ̃ = 0 (3b),
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∂L

∂λ
= e◦ − ẽ1 − ẽ2 = 0 (3c). (2.3)

Solving the FOCs yields the Lagrange multiplier λ̃ = λ(e◦) and the optimal efforts ẽ1(e◦),
ẽ2(e◦) along the two dimensions. Now plugging ẽ1(e◦), ẽ2(e◦) into the objective function
and we can get a new function C◦(e◦) = C1(ẽ1(e◦))+C2(ẽ2(e◦)) which yields the minimum
value of C◦ for a given e◦. Taking the derivative of C◦ with respect to e◦, we obtain

dC◦(e◦)
de◦

= C1′(ẽ1(e◦))dẽ
1(e◦)
de◦

+ C2′(ẽ2(e◦))dẽ
2(e◦)
de◦

. (2.4)

By (2.3a) and (2.3b), C1′(ẽ1) = λ̃ and C2′(ẽ2) = λ̃, we have (2.4)=λ̃
[
dẽ1(e◦)
de◦

+ dẽ2(e◦)
de◦

]
.

By (2.3c), e◦ = ẽ1 + ẽ2, and hence dẽ1(e◦)
de◦

+ dẽ2(e◦)
de◦

= 1, thus dC◦(e◦)
de◦

= λ̃. Because C1(·)
and C2(·) are strictly increasing, again by (2.3a) and (2.3b), λ̃ > 0, thus, dC◦(e◦)

de◦
> 0, i.e.,

C◦(e◦) is strictly increasing.

By dC◦(e◦)
de◦

= λ̃, (2.3a) and (2.3b), we have

C◦′(e◦) = C1′(ẽ1) = C2′(ẽ2). (2.5)

By the assumption C2′′(·) > 0, C2′−1(·) is well-defined, hence C2′−1 (
C1′(ẽ1)

)
= ẽ2. By

(2.3c), ẽ1 + ẽ2 = e◦, we obtain C2′−1 (
C1′(ẽ1)

)
+ ẽ1 = e◦. Because C1′′(·) > 0 and

C2′′(·) > 0, C1′−1(·) and C2′−1(·) are strictly increasing, thus ẽ1 is strictly increasing in
e◦ by (2.5). Further by (2.3a), C1′(ẽ1) = λ̃, λ̃ is strictly increasing in e◦. Then because
dC◦(e◦)
de◦

= λ̃ that we have just proved, dC◦(e◦)
de◦

is strictly increasing in e◦, i.e., C◦(e◦) is
strictly convex.

Proof of Lemma 2.3. Denote ε◦ = ε1 + ε2 and it has CDF Ψ◦(ε◦). Denote the quantile
function of εl, l = 1, 2, by Ψ−1(u) and the quantile function of ε◦ by Ψ◦−1(u). Write the
formula of E(εl(n)), l = 1, 2,

E(εl(n)) =
∫ +∞

−∞
ε1nΨ(εl)n−1ψ(εl)dεl =

∫ +∞

−∞
ε1nΨ(εl)n−1dΨ(εl)

=
∫ 1

0
Ψ−1(u)nun−1du (2.6)

where the last equality is by substituting Ψ−1(u) = εl. Similarly, we have E(ε◦(n)) =∫ 1
0 Ψ◦−1(u)nun−1du. Then

E(ε1(n)) + E(ε2(n))− E((ε1 + ε2)(n)) = E(ε1(n)) + E(ε2(n))− E(ε◦(n))

=
∫ 1

0
2Ψ−1(u)nun−1du−

∫ 1

0
Ψ◦−1(u)nun−1du
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=
∫ 1

0
(2Ψ−1(u)−Ψ◦−1(u))nun−1du. (2.7)

Recall the assumption that εl, l = 1, 2, follows a symmetric log-concave distribution, thus
Ψ(εl) = 1−Ψ(εl), and then Ψ−1(u) = Ψ−1(1−u). Similarly, since ε◦ follows a symmetric
distribution, then Ψ◦−1(1 − u) = Ψ◦−1(u). As a result, by (2.7), we have the following
result:

E(ε1(n)) + E(ε2(n))− E((ε1 + ε2)(n))

=
∫ 1

2

0
(2Ψ−1(u)−Ψ◦−1(u))nun−1du+

∫ 1

1
2

(2Ψ−1(u)−Ψ◦−1(u))nun−1du

= −
∫ 1

1
2

(2Ψ−1(1− u)−Ψ◦−1(1− u))n(1− u)n−1du+
∫ 1

1
2

(2Ψ−1(u)−Ψ◦−1(u))nun−1du

= −
∫ 1

1
2

(2Ψ−1(u)−Ψ◦−1(u))n(1− u)n−1du+
∫ 1

1
2

(2Ψ−1(u)−Ψ◦−1(u))nun−1du

=
∫ 1

1
2

(2Ψ−1(u)−Ψ◦−1(u))n[un−1 − (1− u)n−1]du. (2.8)

By Bagnoli and Bergstrom (2005), Corollary 2, if the PDF is log-concave, then its hazard
rate function is increasing over the support. By Watson and Gordon (1986), Theorem 1,
if ε1 and ε2 are independent continuous random variables having symmetric distribution
with non-decreasing hazard rate functions, then 2Ψ−1(u) − Ψ◦−1(u) < 0 if u ∈ (0, 1/2),
and 2Ψ−1(u) − Ψ◦−1(u) > 0 if u ∈ (1/2, 1). Though (2Ψ−1(u) − Ψ◦−1(u))n[un−1 − (1 −
u)n−1] = 0 if u = 1/2, it has a measure 0 for u = 1/2 in (2.8). Since 2Ψ−1(u)−Ψ◦−1(u) > 0
and un−1− (1−u)n−1 > 0 if u ∈ (1/2, 1), when n ≥ 2, by (2.8), E(ε1(n))+E(ε2(n))−E((ε1 +
ε2)(n)) > 0.

Proof of Proposition 2.4. (i) is directly given by Lemma 2.3 by letting n = 2. To
prove (ii), recall the equilibrium efforts in Lemma 2.1 and (2.1), el∗ = C l′−1(Alg(0)),
l = 1, 2, and e◦∗ = C◦′

−1 (Ag◦(0)). The difference of the equilibrium efforts is

∆e = e1∗ + e2∗ − e◦∗ = C1′−1(A1g(0)) + C2′−1(A2g(0))− C◦′−1 (Ag◦(0))

= C1′−1(wAg(0)) + C2′−1((1− w)Ag(0))− C1′−1(Ag◦(0))− C2′−1(Ag◦(0))

= [C1′−1(wAg(0))− C1′−1(Ag◦(0))]

+[C2′−1((1− w)Ag(0))− C2′−1(Ag◦(0))]. (2.9)

where the third equality is driven by Lemma 2.2 that C◦′(e◦) = C1′(ẽ1) = C2′(ẽ2) and all
the cost functions are strictly increasing and strictly convex. By (2.9), if g◦(0) > wg(0)
and g◦(0) > (1 − w)g(0), then ∆e < 0. Equivalently, the sufficient condition is g◦(0) >
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max{wg(0), (1− w)g(0)}.
(iii)(a) is directly given by letting w = 1/2. For (iii)(b), denote C(·) = C1(·) =

C2(·). If C ′(·) is convex, then C ′−1(·) is concave. By the concavity of C ′−1(·), we have
1
2(C ′−1(y1)+C ′−1(y2)) ≤ C ′−1

(
y1+y2

2

)
where y1 and y2 are in the domain of C ′−1(·). As a

result, the inequality holds for C1′−1(wAg(0)) +C2′−1((1−w)Ag(0)) = C ′−1(wAg(0)) +
C ′−1((1 − w)Ag(0)) ≤ 2C ′−1(Ag(0)/2). Furthermore, by (2.9) and C(·) = C1(·) =
C2(·), ∆e = C ′−1(wAg(0)) + C ′−1((1 − w)Ag(0)) − 2C ′−1(Ag◦(0)) ≤ 2C ′−1(Ag(0)/2) −
2C ′−1(Ag◦(0)). Since C(·) is strictly convex, C ′(·) is strictly increasing, and then C ′−1(·)
is strictly increasing. Hence, if g◦(0) > g(0)/2, ∆e < 0.

Proof of Corollary 2.5. For contestant i, V seq
i = e1∗ + ε1 + e2∗ + ε2 and V sim

i =
e◦∗ + ε1 + ε2. By (2.9), if g◦(0) ≥ max{wg(0), (1 − w)g(0)}, e1∗ + e2∗ ≤ e◦∗. Thus,
P{V sim

i ≥ z} = P{e◦∗+ε1 +ε2 ≥ z} = P{ε1 +ε2 ≥ z−e◦∗} ≥ P{ε1 +ε2 ≥ z−e1∗−e2∗} =
P{V seq

i ≥ z} for any z, where the inequality is due to e1∗ + e2∗ ≤ e◦∗. By the definition
of usual stochastic order (see Shaked and Shanthikumar 2007, (1.A.1)), V sim

i ≥st V seq
i .

Proof of Proposition 2.6. If the cost functions are in the exponential form C l(el) =
exp(ρlel), l = 1, 2, C l′(el) = ρl exp(ρlel) and then C l′−1(y) = ln (yρ1) /ρ1 where y is in the
domain of C l′−1(·). By (2.9), the difference of equilibrium efforts between two contests
can be written as

∆e = ln
(
wAg(0)/ρ1

)
/ρ1 + ln

(
(1− w)Ag(0)/ρ2

)
/ρ2

− ln
(
Ag◦(0)/ρ1

)
/ρ1 − ln

(
Ag◦(0)/ρ2

)
/ρ2

= ln (wg(0)/g◦(0)) /ρ1 + ln ((1− w)g(0)/g◦(0)) /ρ2. (2.10)

Without loss of generality, assume that ρ1 ≥ ρ2 and denote Q = ln (wg(0)/g◦(0)) +
ln ((1− w)g(0)/g◦(0)). If g◦(0) > max{wg(0), (1 − w)g(0)}, then Q < 0. Thus we have
the lower and upper bounds of ∆e as Q/ρ1 ≥ ∆e ≥ Q/ρ2.

The upper bound Q/ρ2 is increasing in ρ2 and the lower bound Q/ρ1 is increasing in
ρ1. Since lim

ρ1→0
Q/ρ1 = −∞. By Proposition 2.4(i), ∆ε > 0, there exists ρ > 0 such that

when ρ2 ≤ ρ1 ≤ ρ, ∆ = ∆e + ∆ε ≤ 0. Moreover, lim
ρ2→∞

Q/ρ2 = 0. There exists ρ > 0 such
that when ρ1 ≥ ρ2 ≥ ρ, ∆ = ∆e + ∆ε ≥ 0.

If ρ1 = ρ2, denote ρ = ρ1 = ρ2. By (2.10), ∆e = 1
ρ
(ln (wg(0)/g◦(0))+ln ((1− w)g(0)/g◦(0)))

= Q/ρ. If g◦(0) > max{wg(0), (1 − w)g(0)}, then Q < 0. The difference ∆e = Q/ρ is
increasing in ρ > 0. Since lim

ρ→0
Q/ρ = −∞ and lim

ρ→∞
Q/ρ = 0, there exists ρ̃ > 0 such that

if ρ ≥ ρ̃, ∆ = ∆e + ∆ε ≥ 0, and if ρ ≤ ρ̃, ∆ = ∆e + ∆ε ≤ 0.
Proof of Proposition 2.7. For (i), by Lemma 2.1, the total effort in the sequential
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contest is

e1∗(w) + e2∗(w) = ln
(
wAg(0)/ρ1

)
/ρ1 + ln

(
(1− w)Ag(0)/ρ2

)
/ρ2.

Take derivative with respect to w, d(e1∗(w)+e2∗(w))
dw

= 1
ρ1w
− 1
ρ2(1−w) . Hence, d

2(e1∗(w)+e2∗(w))
dw2 =

− 1
ρ1w2 − 1

ρ2(1−w)2 ≤ 0, then e1∗(w) + e2∗(w) is concave in w ∈ (0, 1), and thus the optimal
prize allocation is w∗ = ρ2

ρ1+ρ2 . With the optimal allocation, the total effort becomes

e1∗(w∗) + e2∗(w∗) = ln
(

ρ2Ag(0)
ρ1(ρ1 + ρ2)

)
/ρ1 + ln

(
ρ1Ag(0)

ρ2(ρ1 + ρ2)

)
/ρ2.

For (ii), by (2.1), the total effort in the simultaneous contest is e◦∗ = ln (Ag◦(0)/ρ1) /ρ1 +
ln (Ag◦(0)/ρ2) /ρ2. Then, we have the difference of efforts under the optimal allocation
of prizes in the sequential contest,

∆e = 1
ρ1 ln

(
ρ2g(0)

(ρ1 + ρ2)g◦(0)

)
+ 1
ρ2 ln

(
ρ1g(0)

(ρ1 + ρ2)g◦(0)

)

=
[
ρ2 ln

(
ρ2g(0)

(ρ1 + ρ2)g◦(0)

)
+ ρ1 ln

(
ρ1g(0)

(ρ1 + ρ2)g◦(0)

)]
/(ρ1ρ2)

= ln
( ρ2

ρ1 + ρ2

)ρ2 (
ρ1

ρ1 + ρ2

)ρ1 (
g(0)
g◦(0)

)ρ1+ρ2 /(ρ1ρ2)

=

ln

( ρ2

ρ1 + ρ2

) ρ2

ρ1+ρ2
(

ρ1

ρ1 + ρ2

) ρ1

ρ1+ρ2

− ln
[
g◦(0)
g(0)

]
/(

(ρ1 + ρ2)ρ1ρ2
)

=
{

ln
[
ss(1− s)1−s

]
− ln [g◦(0)/g(0)]

}/(
(ρ1 + ρ2)ρ1ρ2

)
,

where s = ρ2

ρ1+ρ2 . The sign of ∆e depends on the comparison of ss(1− s)1−s (0 < s < 1)
and g◦(0)/g(0). Since dss(1−s)1−s

ds
= (1−s)1−sss(ln(s)−ln(1−s)), ss(1−s)1−s is decreasing

in s ∈ [0, 1/2] and increasing in s ∈ [1/2, 1]. If s = 1/2, then ss(1 − s)1−s = 1/2, and if
s = 1 or s = 0, then ss(1 − s)1−s = 1. Therefore, ss(1 − s)1−s ∈ [1/2, 1). For a given
value of g◦(0)/g(0) ∈ (1/2, 1) (e.g., if εl ∼ N(0, σ), l = 1, 2, g◦(0)/g(0) = 1/

√
2), there

exist s ∈ (1/2, 1) and s ∈ (0, 1/2) such that when s ∈ (s, s), ss(1 − s)1−s < g◦(0)/g(0),
i.e., ∆e < 0. Otherwise, if s ∈ (0, s] ∪ [s, 1), ∆e ≥ 0.

Since t = 1/s − 1, t ∈ (0, 1) if s ∈ (1/2, 1), and t ∈ (1,∞) if s ∈ (0, 1/2). Thus,
there exist t ∈ (0, 1) and t ∈ (1,∞), such that when t ∈ (t, t), ∆e < 0. Otherwise, if
t ∈ (0, t] ∪ [t,∞), ∆e ≥ 0.

Proof of Proposition 2.9. (i) is directly given by Lemma 2.3. For (ii), by Lemma 2.8,
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the difference of equilibrium efforts with n contestants is

∆e
n = e1∗ + e2∗ − e◦∗ = C1′−1 (

A1h(ε;n)
)

+ C2′−1 (
A2h(ε;n)

)
− C◦′−1 (Ah◦(ε◦;n))

= C1′−1 (
A1h(ε;n)

)
+ C2′−1 (

A2h(ε;n)
)

−C1′−1 (Ah◦(ε◦;n))− C2′−1 (Ah◦(ε◦;n)) , (2.11)

where the third equality is driven by Lemma 2.3 that C◦′(e◦) = C1′(ẽ1) = C2′(ẽ2) and
all the cost functions are strictly increasing and strictly convex. Similar to Proposition
2.4(ii), the sufficient condition for ∆e

n < 0 is h◦(ε◦;n) > max{wh(ε;n), (1− w)h(ε;n)}.
For (ii), denote H(n) = h◦(ε◦;n)

h(ε;n) . For any n, if H(n) > max{w, (1−w)}, then ∆e
n < 0.

If εl ∼ N(0, σ), ε◦ = ε1 + ε2 ∼ N(0,
√

2σ). We have

h(ε;n) =
∫ +∞

−∞
(n− 1)Ψ(ε)n−2ψ(ε)2dε =

∫ 1

0
ψ(ε)dΨ(ε)n−1

= 1√
2πσ

∫ 1

0
exp(−ε2/(2σ2))dΨ(ε)n−1.

Substitute ε/σ with y, then h(ε;n) = 1√
2πσ

∫ 1
0 exp(−y2/2)dΦ(y)n−1 where Φ(y) ∼ N(0, 1).

Similarly, for h◦(ε◦;n), substitute ε/(
√

2σ) with ỹ,

h◦(ε◦;n) =
∫ 1

0
ψ◦(ε◦)dΨ◦(ε◦)n−1 = 1

2
√
πσ

∫ 1

0
exp(−ε2/(4σ2))dΨ◦(ε)n−1

= 1
2
√
πσ

∫ 1

0
exp(−ỹ2/2)dΦ(ỹ)n−1.

Then H(n) = h◦(ε◦;n)
h(ε;n) = 1/

√
2. Thus if random factors follow normal distribution, H(n) =

1/
√

2. By H(n) > max{w, (1− w)}, if w ∈ (1−
√

2
2 ,
√

2
2 ), ∆e

n < 0 for any n.
Proof of Proposition 2.10. Denote the rth order statistic of a random variable with

a sample size n by subscript (r:n) and denote Ψ−1(·) as the quantile function of CDF Ψ(·).
It is sufficient to show that there exists a n̄ such that

E(ε1(n−1:n)) + E(ε2(n−1:n))− E(ε◦(n−1:n)) ≤ 0, (2.12)

when n ≤ n̄. According to Chakraborty (1999), (2.12) holds for that the following
regularity condition is satisfied: there exists u0 ∈ (0, 1) such that Ψ−1(u) + Ψ−1(u) −
Ψ◦−1(u) < 0 if u ∈ (0, u0), and Ψ−1(u) + Ψ−1(u)−Ψ◦−1(u) > 0 if u ∈ (u0, 1).

Recall the assumption that εl, l = 1, 2, follows a symmetric log-concave distribution.
By Bagnoli and Bergstrom (2005), Corollary 2, if the PDF is log-concave, then its hazard
rate function is increasing over the support. By Watson and Gordon (1986), Theorem
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1, one sufficient condition for the regularity condition to hold and u0 = 0.5 is that
Ψ(·) is a symmetric distribution with non-decreasing hazard rate function. Therefore,
the existence of n̄ such that (2.12) holds is guaranteed under our assumption that the
random factors follow a symmetric log-concave distribution.

Write the formulas of E(εl(n)) and E(εl(n−1)), l = 1, 2, E(εl(n)) =
∫+∞
−∞ εlnΨ(εl)n−1ψ(εl)dεl

and E(εl(n−1)) =
∫+∞
−∞ εl(n − 1)Ψ(εl)n−2ψ(εl)dεl. The following recurrence relation holds

(David and Nagaraja, 2003, Chapter 3.4 Relation 1):

nE(εl(n−1))− (n− 1)E(εl(n))

=
∫ +∞

−∞
εln(n− 1)Ψ(εl)n−2ψ(εl)dεl −

∫ +∞

−∞
εln(n− 1)Ψ(εl)n−1ψ(εl)dεl

=
∫ +∞

−∞
εln(n− 1)(Ψ(εl)n−2 −Ψ(εl)n−1)ψ(εl)dεl = E(εl(n−1:n)), (2.13)

where the last equality is because the PDF for the (n − 1)th order statistics of εl with
sample size n is n(n − 1)Ψ(εl)n−2(1 − Ψ(εl))ψ(εl). A similar relation can be applied to
ε◦, nE(ε◦(n−1))− (n− 1)E(ε◦(n)) = E(ε◦(n−1:n)). By the above relations, we have E(εl(n−1))−
E(εl(n)) = 1

n
[E(εl(n−1:n))−E(εl(n))] (l = 1, 2) and E(ε◦(n−1))−E(ε◦(n)) = 1

n
[E(ε◦(n−1:n))−E(ε◦(n))].

Then,

∆ε
n−1 −∆ε

n = [E(ε1(n−1)) + E(ε2(n−1))− E(ε◦(n−1))]− [E(ε1(n)) + E(ε2(n))− E(ε◦(n))]

= [E(ε1(n−1))− E(ε1(n))] + [E(ε2(n−1))− E(ε2(n))]− [E(ε◦(n−1))− E(ε◦(n))]

= 1
n

{
[E(ε1(n−1:n))− E(ε1(n))] + [E(ε2(n−1:n))− E(ε2(n))]− [E(ε◦(n−1:n))− E(ε◦(n))]

}
= 1

n

{
[E(ε1(n−1:n)) + E(ε2(n−1:n))− E(ε◦(n−1:n))]− [E(ε1(n)) + E(ε2(n))− E(ε◦(n))]

}
= 1

n

{
[E(ε1(n−1:n)) + E(ε2(n−1:n))− E(ε◦(n−1:n))]−∆ε

n

}
.

By Lemma 2.3, ∆ε
n ≥ 0. Then ∆ε

n−1−∆ε
n ≤ 0 if E(ε1(n−1:n))+E(ε2(n−1:n))−E(ε◦(n−1:n)) ≤ 0.

By (2.12), there exists n̄ such that when n ≤ n̄, E(ε1(n−1:n))+E(ε2(n−1:n))−E(ε◦(n−1:n)) ≤ 0.
Thus, there exists n̄ such that when n ≤ n̄, ∆ε

n−1−∆ε
n ≤ 0. The desired result holds.

Proof of Proposition 2.11. First, we prove the following lemma.

Lemma 2.15 If PDF ψ(ε1) is symmetric and log-concave, then

E(ε1(n)) ≥
(

1− 1
2n
)

Ψ−1
(

n

n+ 1 −
1
2n
)
.

Proof of Lemma 2.15. The expectation of the highest order statistics of ε1 can be written
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as

E(ε1(n)) =
∫ +∞

−∞
ε1nΨ(ε1)n−1dΨ(ε1) =

∫ 1

0
Ψ−1(u)nun−1du,

by letting ε1 = Ψ−1(u). Let B(u) = nun−1, then we have

E(ε1(n)) =
∫ 1

0
Ψ−1(u)B(u)du =

∫ 1

1/2
Ψ−1(u)B(u)du+

∫ 1/2

0
Ψ−1(u)B(u)du

=
∫ 1

1/2
Ψ−1(u)B(u)du−

∫ 1

1/2
Ψ−1(1− u)B(1− u)du

=
∫ 1

1/2
Ψ−1(u)B(u)du−

∫ 1

1/2
Ψ−1(u)B(1− u)du

=
∫ 1

1/2
Ψ−1(u)[B(u)−B(1− u)]du

where the fourth equality is by the symmetric property that ψ(ε1) = ψ(−ε1), Ψ(ε1) =
1 − Ψ(ε1) and Ψ−1(1 − u) = Ψ−1(u). By Lemma 2.16, PDF ψ(ε1) is unimodal and
symmetric at 0, thus ψ(ε1) is decreasing in ε1 ≥ 0. When ε1 ≥ 0, the CDF Ψ(ε1) is
concave because Ψ′′(ε1) = ψ′(ε1) ≤ 0. As a result, Ψ−1(u) is convex in u ∈ [1/2, 1]. Let
K =

∫ 1
1/2B(u)−B(1− u)du =

∫ 1
1/2[nun−1 − n(1− u)n−1]du = 1− 1/2n, thus

∫ 1
1/2(B(u)−

B(1 − u))/Kdu = 1. Since (B(u) − B(1 − u))/K can be considered as a PDF, then∫ 1
1/2 Ψ−1(u){[B(u) − B(1 − u)]/K}du is the expectation of Ψ−1(u) with such PDF. By

the convexity of Ψ−1(u) and Jensen’s inequality, we have

E(ε1(n))/K =
∫ 1

1/2
Ψ−1(u){[B(u)−B(1− u)]/K}du ≥ Ψ−1

(∫ 1

1/2
u[B(u)−B(1− u)]/Kdu

)
.

Integrating by parts, we have
∫ 1

1/2
u[B(u)−B(1− u)]du =

∫ 1

1/2
[nun − n(1− u)n−1u]du

=
(

n

n+ 1 −
n

n+ 1
1

2n+1

)
+
∫ 1

1/2
ud(1− u)n

=
(

n

n+ 1 −
n

n+ 1
1

2n+1

)
− 1

2n+1 −
∫ 1

1/2
(1− u)ndu

=
(

n

n+ 1 −
n

n+ 1
1

2n+1

)
− 1

2n+1 −
1

n+ 1
1

2n+1 = n

n+ 1 −
1
2n .

Because K =
∫ 1

1/2B(u)−B(1− u)du = 1− 1/2n,

E(ε1(n)) ≥ KΨ−1
(∫ 1

1/2
u[B(u)−B(1− u)]/Kdu

)
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≥
(

1− 1
2n
)

Ψ−1
(

( n

n+ 1 −
1
2n )

/
(1− 1

2n )
)
≥
(

1− 1
2n
)

Ψ−1
(

n

n+ 1 −
1
2n
)
,

where the last inequality is because Ψ−1(·) is increasing and 1− 1
2n ≤ 1. The inequality

holds.
Now we prove Proposition 2.11.
(i) If ε1 and ε2 have a bounded support [−a, a], then ε◦ has the bounded sup-

port [−2a, 2a]. By Lemma 2.15,
(
1− 1

2n
)

Ψ−1
(

n
n+1 −

1
2n
)
≤ E(ε1(n)) ≤ a. We have

lim
n→∞

(
1− 1

2n
)

Ψ−1
(

n
n+1 −

1
2n
)
≤ lim

n→∞
E(ε1(n)) ≤ lim

n→∞
a. By the Squeeze Theorem,

lim
n→∞

(
1− 1

2n
)

Ψ−1
(

n

n+ 1 −
1
2n
)

= a = lim
n→∞

E(ε1(n)) = a.

Similar results can be extended to ε2 and ε◦, thus lim
n→∞

∆ε
n = lim

n→∞
E(ε1(n)) + lim

n→∞
E(ε2(n))−

lim
n→∞

E(ε◦(n)) = a+ a− 2a = 0. The result holds.
(ii) If εl ∼ N(0, σ) (l = 1, 2), the quantile function can be written as

Φ−1(u) = σ
√

2erf−1(2u− 1), (2.14)

where u ∈ (0, 1) and erf(u) is the error function, erf(u) = 1
π

∫ u
−u e

t2dt. Then ∆ε
n can be

written as

∆ε
n =

∫ +∞

−∞
ε1nΦn−1(ε1)dΦ(ε1) +

∫ +∞

−∞
ε2nΦn−1(ε2)dΦ(ε2)−

∫ +∞

−∞
ε◦nΦ◦n−1(ε◦)dΦ◦(ε◦)

=
∫ 1

0
nΦ−1(u)un−1du+

∫ 1

0
nΦ−1(u)un−1du−

∫ 1

0
nΦ◦−1(u)un−1du

=
∫ 1

0
n(2Φ−1(u)− Φ◦−1(u))un−1du.

By (2.14), 2Φ−1(u) − Φ◦−1(u) = (2
√

2σ − 2σ)erf−1(2u − 1) because ε◦ ∼ N(0,
√

2σ)
and Φ◦−1(u) = 2σerf−1(2u − 1). Hence, we can define a new random variable ε̃ that is
normally distributed with mean 0 and standard deviation (2 −

√
2)σ. Denote its CDF

by Φ̃(ε̃), then 2Φ−1(u)− Φ◦−1(u) = Φ̃−1(u). Thus

∆ε
n =

∫ 1

0
nΦ̃−1(u)un−1du = E(ε̃(n)). (2.15)

By Lemma 2.15, lim
n→∞

(
1− 1

2n
)

Φ̃−1
(

n
n+1 −

1
2n
)
≤ lim

n→∞
E(ε̃(n)). Because the normal dis-

tribution is defined on the (−∞,∞), then lim
n→∞

(
1− 1

2n
)

Φ̃−1
(

n
n+1 −

1
2n
)

= ∞. Then if
ε1 and ε2 follow normal distributin, lim

n→∞
∆ε
n =∞.

Proof of Proposition 2.12. If the cost functions are in the exponential form, i.e.,
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C l(el) = exp(ρlel), ρl > 0, l = 1, 2, by (2.11), the difference of equilibrium efforts is

∆e
n = ln

(
wh(ε;n)
h◦(ε◦;n)

)
/ρ1 + ln

(
(1− w)h(ε;n)
h◦(ε◦;n)

)
/ρ2. (2.16)

By Proposition 2.9(ii), if εl ∼ N(0, σ), l = 1, 2, then 1/H(n) = h(ε;n)
h◦(ε◦;n) =

√
2 for any

n. Since w ∈ (1 −
√

2
2 ,
√

2
2 ) and h(ε;n)

h◦(ε◦;n) =
√

2, ∆e
n < 0 by (2.16).Thus, ∆e

n is a fixed
non-positive value for any n. For ∆ε

n, by (2.15), ∆ε
n = E(ε̃(n)) where ε̃ ∼ N(0, (2−

√
2)σ).

By (2.13), E(ε̃(n−1))−E(ε̃(n)) = 1
n
[E(ε̃(n−1:n))−E(ε̃(n))] ≤ 0. Thus, E(ε̃(n)) is increasing in

n. By Proposition 2.11, lim
n→∞

∆ε
n =∞, therefore the difference of the random factors ∆ε

n

is a positive value increasing in n. There exists a threshold ñ ∈ [2,∞) such that when
n ≤ ñ, ∆n = ∆ε

n + ∆e
n ≤ 0, and when n ≥ ñ, ∆n = ∆ε

n + ∆e
n ≥ 0.

2.9 Appendix.

Proof of Lemma 2.1. Consider a two-person model in which the contestants are denoted
as i and j. For sub-contest l, l = 1, 2, because the random variables ξl = εli−εlj have CDF
G(ξ), the winning probability of a contestant i can be written by P{eli + εli > elj + εlj} =
G(eli−elj). Assume that in the equilibrium, contestant j makes effort e∗, then the expected
payoff to contestant i is E(uli(eli)) = AlG(eli − elj)−C(eli) = AlG(eli − el∗)−C l(eli). Then
the FOC is given by Alg(el∗i − el∗) = C l′(el∗i ). Since contestant i and j are homogeneous,
in the symmetric equilibrium, contestant i makes the same effort el∗ as contestant j,
thus Alg(0) = C ′(el∗). Since the cost function C l′′(·) > 0, the equilibrium effort is
el∗ = C l′−1(Alg(0)).

Proof of Lemma 2.8. For the sub-contest l, l = 1, 2, the expected payoff to con-
testant i is E(ui(eli)) = Al

∫+∞
−∞ Ψ(eli − el∗(n) + εl)n−1ψ(εl)dεl − C l(eli). The FOC yields

Al
∫+∞
−∞ (n−1)Ψ(eli−el∗(n)+εl)n−2ψ(eli−el∗(n)+εl)ψ(εl)dεl = C l′(eli). In the symmetric e-

quilibrium, contestant i makes the same effort el∗(n) as other contestants. Since C l′′(·) >
0, the equilibrium effort is given by el∗(n) = C l′−1(Al

∫+∞
−∞ (n − 1)Ψ(εl)n−2ψ(εl)2dεl) =

C l′−1 (
Alh(εl;n)

)
= C l′−1 (

Alh(ε;n)
)
.

Consider the simultaneous contest with n contestants. Given a fixed aggregate ef-
fort level e◦, all the contestants follow the optimal effort allocation, e◦ = ẽ1 + ẽ2.
The strategy of a contestant is his aggregate effort level, e◦. By Lemma 2.2, C◦(e◦)
is strictly increasing and strictly convex. Then the expected payoff to contestant i is
E(ui(e◦i )) = A

∫+∞
−∞ Ψ◦(e◦i − e◦∗(n) + ε◦)n−1ψ◦(ε◦)dε◦ − C◦(e◦i ). Similar to the deriva-

tion in the sub-contest 1, the equilibrium effort in the simultaneous contest is given by
e◦∗(n) = C◦′

−1(A
∫+∞
−∞ (n− 1)Ψ◦(ε◦)n−2ψ◦(ε◦)2dε◦) = C◦′

−1 (Ah◦(ε◦;n)).
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Lemma 2.16 If PDF ψ(ε) is twice continuously differentiable and log-concave, then it
is unimodal.

Proof of Lemma 2.16. By the definition of twice differentiable and log-concave function,
we have ∂2 ln[ψ(ε)]

∂ε2
= ∂

∂ε

[
ψ′(ε)
ψ(ε)

]
≤ 0. Thus, for any ε1 ≤ ε2, ψ′(ε1)

ψ(ε1) ≥
ψ′(ε2)
ψ(ε2) , and equivalently,

ψ′(ε1)ψ(ε2)− ψ(ε1)ψ′(ε2)
ψ(ε1)ψ(ε2) ≥ 0. (2.17)

First, consider the case that there exists an ε∗ such that ψ′(ε∗) = 0. In (2.17), let ε2 = ε∗,
then (2.17) implies that ψ′(ε1)ψ(ε∗) ≥ 0. Since ψ(ε∗) ≥ 0, ψ′(ε1) ≥ 0 for ε1 ≤ ε∗.
Similarly, in (2.17), let ε1 = ε∗, then −ψ′(ε∗)ψ(ε2) ≥ 0. Thus, ψ′(ε2) ≤ 0 for ε2 ≥ ε∗.
Hence, if ε∗ exists, PDF ψ(ε) is increasing for ε ≤ ε∗ and decreasing for ε ≥ ε∗. Second, if
ε∗ does not exist, because ψ(ε) is twice differentiable, ψ(ε) is either monotone increasing
or decreasing. Thus, ψ(ε) is unimodal.

Proof of Proposition 2.13. Index two contestants by i and j.

(i) In the sub-contest l, l = 1, 2, of the sequential contest, if contestant j with type
H or L makes effort el∗H or el∗L in the equilibrium, respectively, the winning probability
of contestant i is ηlG(eli − el∗L ) + (1 − ηl)G(eli − el∗H). The expected payoff to contestant
i is E(uli(eli|xi)) = Al[ηlG(eli − el∗L ) + (1 − ηl)G(eli − el∗H)] − C(eli)/xi. The FOC yields
Al[ηlg(el∗i −el∗L )+(1−ηl)g(el∗i −el∗H)] = C ′(el∗i )/xi. In the symmetric equilibrium, contestant
i makes effort el∗L if he is low type and el∗H if he is high type, which lead to

Al[ηlg(0) + (1− ηl)g(el∗L − el∗H)] = C ′(el∗L )/xL, (2.18)

Al[ηlg(el∗H − el∗L ) + (1− ηl)g(0)] = C ′(el∗H)/xH . (2.19)

Now we prove that there exists an equilibrium such that el∗L ≤ el∗H . For notation
simplicity, we suppress the superscript l in the proof of el∗L ≤ el∗H . Letting e∗H−e∗L = δH−L,
we want to show that there exists a δH−L ≥ 0. Divide (2.18) by (2.19),

ηg(0) + (1− η)g(−δH−L)
ηg(δH−L) + (1− η)g(0) = xHC

′(e∗L)
xLC ′(e∗H) . (2.20)

By the symmetric assumption of g(·), we have g(δH−L) = g(−δH−L). Then (2.20) becomes

ηg(0) + (1− η)g(δH−L)
ηg(δH−L) + (1− η)g(0) −

xHC
′(e∗L)

xLC ′(e∗H) = 0. (2.21)
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By e∗H = e∗L + δH−L, the left hand side (LHS) of (2.21) is

LHS of (2.21) = ηg(0) + (1− η)g(δH−L)
ηg(δH−L) + (1− η)g(0) −

xHC
′(e∗L)

xLC ′(e∗L + δH−L) , (2.22)

If δH−L = 0, (2.22) = 1 − xH
xL
≤ 0. If δH−L → ∞, then (2.22) → η

1−η > 0 because
lim

δH−L→∞
g(δH−L) = 0. Since (2.22) is continuous in δH−L, there exists an intersection

point δH−L ≥ 0 such that (2.21) is satisfied. As a result, there exists an equilibrium such
that e∗H ≥ e∗L.

(ii) We firstly derive the equilibrium effort in the simultaneous contest. Since contes-
tants are endowed with expertise (xH , xL) or (xL, xH). Both types of contestants have
the cost function as C(·)/xH + C(·)/xL. Thus, the equilibrium effort for both contes-
tants must be the same. If contestant i has expertise xL in the first attribute and xH

in the second attribute, given the aggregate effort e◦i , there exists an optimal alloca-
tion of efforts e◦i = ẽ1

i + ẽ2
i . By Lemma 2.2, the optimal allocation of efforts satisfies

C ′(ẽ1
i )/xL = C ′(ẽ2

i )/xH . Then,

C ′(ẽ1
i )/C ′(ẽ2

i ) = xL/xH . (2.23)

When C ′(ei) = ρ exp(ρei), (2.23) becomes exp(ρ(ẽ1
i − ẽ2

i )) = xL/xH , equivalently ẽ1
i −

ẽ2
i = ln(xL/xH)/ρ. Since e◦i = ẽ1

i + ẽ2
i , we have ẽ1

i = [e◦i + ln(xL/xH)/ρ]/2 and ẽ2
i =

[e◦i − ln(xL/xH)/ρ]/2. The total cost is C◦(e◦i ) = C(ẽ1
i )/xL + C(ẽ2

i )/xH . Then, the
derivative of the total cost function is

C◦
′(e◦i ) = ρ

2 exp
(
ρe◦i + ln(xL/xH)

2

)
/xL + ρ

2 exp
(
ρe◦i − ln(xL/xH)

2

)
/xH

= ρ exp(ρe◦i /2)/√xHxL. (2.24)

If contestant j makes equilibrium effort e◦∗, then contestant i’s expected payoff function
can be written as E(usimi (e◦i |xL, xH)) = AG◦(e◦i − e◦∗) − C◦(e◦i ). In the equilibrium,
contestant i makes the effort e◦∗, so the FOC yields Ag◦(0) = C◦′(e◦∗). By (2.24), we
obtain ρ exp(ρe◦∗i /2)/√xHxL = Ag◦(0), thus

e◦∗ = C◦′
−1(Ag◦(0)) = 2 ln (Ag◦(0)√xHxL/ρ) /ρ. (2.25)

Now we compare the expected best performances between the simultaneous and
sequential contests. When ηl = 1/2, the LHS of (2.18) and (2.19) are equal. S-
ince C(e) = exp(ρe), C ′(e) = ρ exp(ρe). By (2.20) and ηl = 1/2, in sub-contest l,
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l = 1, 2, we have xH
xL

= exp(ρ(el∗H − el∗L )), equivalently, el∗H − el∗L = ln(xH/xL)/ρ. Thus, if
w = 1/2, and then the equilibrium efforts in sub-contest l of the sequential contest are
el∗i = ln

(
Axi
4ρ (g(0) + g(ln(xH/xL)/ρ))

)
/ρ, where i = H,L.

Since xH ≥ xL, el∗H ≥ el∗L . Then the performances of the low-type and high-type
contestants are V l∗

L = el∗L + εl and V l∗
H = el∗H + εl. Recall the notation for the highest order

statistic with sample size 2 is (2). Here, for example, if both contestants are low-type,
then the expected best performance is E(max{V l∗

L , V
l∗
L }) = E(V l∗

L(2)). Since ηl = 1/2, the
expected best performance in the sub-contest l is given by V l = ηl

2E(V l∗
L(2)) + 2ηl(1 −

ηl)E(max{V l∗
L , V

l∗
H })+(1−ηl)2E(V l∗

H(2)) = E(V l∗
L(2))/4+E(max{V l∗

L , V
l∗
H })/2+E(V l∗

H(2))/4.
Since el∗H ≥ el∗L , V l∗

H ≥st V l∗
L , we have E(V l∗

H(2)) ≥ E(max{V l∗
L , V

l∗
H }) ≥ E(V l∗

L(2)). Thus, we
can characterize the lower bound and upper bound of V l as:

E(V l∗
L(2)) ≤ V l ≤ E(V l∗

H(2)). (2.26)

Then the upper bound can be written as E(V l∗
H(2)) = E((el∗H + εl)(2)) = el∗H +E(εl(2)). Thus,

we have the upper bound of the expected best performance in the sequential contest,
V seq = V 1 + V 2 ≤ e1∗

H + e2∗
H + E(ε1(2)) + E(ε2(2)). Since both sub-contests are identical, by

denoting E(ε(2)) = E(ε1(2)) = E(ε2(2)) and e∗H = e1∗
H = e2∗

H , we have V seq ≤ 2e∗H + 2E(ε(2)).5

The expected best performance in the simultaneous contest is V sim = E((e◦∗+ε◦)(2)) =
e◦∗+E(ε◦(2)). The difference of the expected best performances between those two contest
mechanisms is

∆ = V seq − V sim ≤ 2e∗H + 2E(ε(2))− e◦∗ − E(ε◦(2)). (2.27)

Now we show that there exists a threshold ρ′ > 0 such that when ρ ≤ ρ′, ∆ ≤ 0. If
εi and εj follow a symmetric log-concave distribution, ξ = εi − εj follows a symmetric
log-concave distribution, g(ξ), because the convolution of log-concave functions is log-
concave, see Marshall et al. (2016), p.p.763. By Lemma 2.16, g(ξ) is symmetric at 0 and
unimodal, then it achieves the maximum value at 0. Denote ln(xH/xL) = r ≥ 0, then

2e∗H − e◦∗ = 2
ρ

ln
(
g(0) + g(ln(xH/xL)/ρ)

4g◦(0)

√
xH
xL

)
= 2
ρ

ln
(
g(0) + g(r/ρ)

4g◦(0)

)
+ r

ρ

5We assume that the expertise of the high and low types in both attributes is the same. Alternatively,
we could allow high or low types in both attributes to be different, with their sum fixed. Allowing the
general expertise along the two dimensions only changes the upper bound or lower bound of V seq in the
proof, and thus the range of xH/xL in Proposition 2.13(ii) may change. It does not qualitatively alter
our results that when the high and low expertise in each attribute is close enough, there exist ρ′ and ρ′

as thresholds on ρ such that if ρ ≥ ρ′, the sequential contest is optimal, and if ρ ≤ ρ′, the simultaneous
contest is optimal. A similar remark applies to Proposition 2.14(ii).
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≤ 2
ρ

ln
(
g(0) + g(0)

4g◦(0)

)
+ r

ρ
= 1
ρ

[
2 ln

(
g(0)

2g◦(0)

)
+ r

]
, (2.28)

where the inequality is because g(·) achieves its maximum value at 0. By ln(xH/xL) = r,
xH/xL ∈ [1, (2g◦(0)/g(0))2), is equivalent to r ∈

[
0,−2 ln

(
g(0)

2g◦(0)

))
. Since 2g◦(0) > g(0),

if r ∈
[
0,−2 ln

(
g(0)

2g◦(0)

))
, 1
ρ

[
2 ln

(
g(0)

2g◦(0)

)
+ r

]
< 0. Thus, 1

ρ

[
2 ln

(
g(0)

2g◦(0)

)
+ r

]
is increasing

in ρ, and

lim
ρ→0+

1
ρ

[
2 ln

(
g(0)

2g◦(0)

)
+ r

]
= −∞. (2.29)

By (2.27) and (2.28), ∆ = V seq−V sim ≤ 2e∗H−e◦∗+2E(ε(2))−E(ε◦(2)) ≤ 1
ρ

[
2 ln

(
g(0)

2g◦(0)

)
+ r

]
+

2E(ε(2)) − E(ε◦(2)). By Lemma 2.3, 2E(ε(2)) − E(ε◦(2)) > 0. Thus, by (2.29), there exists
ρ′ > 0 such that when ρ ≤ ρ′, ∆ ≤ 2e∗H − e◦∗ + 2E(ε(2))− E(ε◦(2)) ≤ 0.

For the lower bound of V seq, by (2.26), V seq = V 1 + V 2 ≥ E(V 1∗
L(2)) + E(V 2∗

L(2)). This
lower bound can be written as E(V 1∗

L(2)) + E(V 2∗
L(2)) = E((e1∗

L + ε1)(2)) + E((e2∗
L + ε2)(2)) =

e1∗
L + E(ε1(2)) + e2∗

L + E(ε2(2)). Since two sub-contests are identical, denote e∗L = e1∗
L = e2∗

L

and E(ε(2)) = E(ε1(2)) = E(ε2(2)). Then, V seq ≥ 2e∗L + E(ε(2)), and we have the difference
between the two contest mechanisms

∆ = V seq − V sim ≥ 2e∗L + 2E(ε(2))− e◦∗ − E(ε◦(2)). (2.30)

Now, we show that there exists ρ′ > 0 such that when ρ ≥ ρ′, ∆ ≥ 0. Similar to the
previous analysis, we have

2e∗L − e◦∗ = 2
ρ

ln
(
g(0) + g(ln(xH/xL)/ρ)

4g◦(0)

√
xL
xH

)
= 2
ρ

ln
(
g(0) + g(r/ρ)

4g◦(0)

)
− r

ρ

≥ 2
ρ

ln
(
g(0)

4g◦(0)

)
− r

ρ
= 1
ρ

[
2 ln

(
g(0)

4g◦(0)

)
− r

]
. (2.31)

Because xH ≥ xL, r ≥ 0, and 2g◦(0) > g(0), 1
ρ

[
2 ln

(
g(0)

4g◦(0)

)
− r

]
< 0. Then, 1

ρ

[
2 ln

(
g(0)

4g◦(0)

)
− r

]
is increasing in ρ, and

lim
ρ→∞

1
ρ

[
2 ln

(
g(0)

4g◦(0)

)
− r

]
= 0. (2.32)

By (2.30) and (2.31), ∆ = V seq−V sim ≥ 2e∗L−e◦∗+2E(ε(2))−E(ε◦(2)) ≥ 1
ρ

[
2 ln

(
g(0)

4g◦(0)

)
− r

]
+

2E(ε(2)) − E(ε◦(2)). By Lemma 2.3, 2E(ε(2)) − E(ε◦(2)) > 0. By (2.32), there exists ρ′ > 0
such that when ρ ≥ ρ′, ∆ ≥ 2e∗L − e◦∗ + 2E(ε(2))− E(ε◦(2)) ≥ 0.
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Proof of Proposition 2.14. Index the two contestants by i and j.

(i) In the sub-contest l, l = 1, 2, the winning probability of contestant i can be written
as P{xi + eli + εli ≥ xj + elj + εlj} = G(xi + eli − xj − elj). If contestant j with type H or
L makes efforts el∗L or el∗H in the equilibrium, the expected payoff to the contestant i is
E(uli(eli|xi)) = AlηlG(xi + eli−xL− el∗L ) +Al(1−ηl)G(xi + eli−xH − el∗H)−C(eli). Because
ui is continuously differentiable, the FOC with respect to effort is given by

Al[ηlg(xi + el∗i − xL − el∗L ) + (1− ηl)g(xi + el∗i − xH − el∗H)] = C ′(el∗i ). (2.33)

For both types of contestants, in the symmetric equilibrium, the strategies el∗H and el∗L

must satisfy

Al
[
ηlg(0) + (1− ηl)g(xL + el∗L − xH − el∗H)

]
= C ′(el∗L ), (2.34)

Al
[
ηlg(xH + el∗H − xL − el∗L ) + (1− ηl)g(0)

]
= C ′(el∗H), (2.35)

which can be obtained by setting i = L or H in (2.33). To simplify the notation, we
suppress the superscript l in the rest proof of (i).

Recall that g(·) is symmetric at 0, thus

g(xL + e∗L − xH − e∗H) = g(xH + e∗H − xL − e∗L). (2.36)

And, by Lemma 2.16, g(·) is unimodal, then

g(xL + e∗L − xH − e∗H) ≤ g(0), (2.37)

because the symmetric unimodal function g(ξ) is maximized at ξ = 0.

For (ii)(a), if η < 1/2, the LHSs of (2.34) and (2.35) satisfy

ηg(0) + (1− η)g(xL + e∗L − xH − e∗H) ≤ ηg(xH + e∗H − xL − e∗L) + (1− η)g(0),

where the inequality is due to (2.37). This leads to C ′(e∗H) ≥ C ′(e∗L). By the assumption
C ′′(·) > 0, we must have e∗H ≥ e∗L. Because of the assumption xH ≥ xL, E(V ∗H) =
xH + e∗H ≥ xL + e∗L = E(V ∗L ).

For (ii)(b), if η > 1/2, we can show that the equilibrium efforts e∗H ≤ e∗L similar
to (ii)(a). Now we show that there exists an equilibrium such that E(V ∗H) ≥ E(V ∗L ) if
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η > 1/2. Divide (2.34) by (2.35),

ηg(0) + (1− η)g(xL + e∗L − xH − e∗H)
(1− η)g(0) + ηg(xH + e∗H − xL − e∗L) −

C ′(e∗L)
C ′(e∗H) = 0. (2.38)

Denote δe = e∗H − e∗L ≤ 0 and δ = xH − xL ≥ 0. (2.38) can be written as

ηg(0) + (1− η)g(−δ − δe)
(1− η)g(0) + ηg(δ + δe)

− C ′(e∗L)
C ′(e∗L + δe)

= 0. (2.39)

Since g(·) is symmetric at 0, g(−δ − δe) = g(δ + δe), and by (2.39) we have

ηg(0) + (1− η)g(δ + δe)
(1− η)g(0) + ηg(δ + δe)

− C ′(e∗L)
C ′(e∗L + δe)

= 0. (2.40)

If δe = −δ, LHS of (2.40)= 1− C′(e∗L)
C′(e∗L−δ)

≤ 0 because C ′′(·) > 0. If δe = 0, we have

ηg(0) + (1− η)g(−δ)
(1− η)g(0) + ηg(δ) −

C ′(e∗L)
C ′(e∗L) = ηg(0) + (1− η)g(δ)

(1− η)g(0) + ηg(δ) − 1 ≥ 0,

where the second equality is due to the symmetric property of g(·), and the inequality
is due to ηg(0) + (1 − η)g(δ) ≥ (1 − η)g(0) + ηg(δ) because δ ≥ 0, η > 1/2 and g(ξ) is
decreasing in ξ ∈ [0,∞) since g(ξ) is unimodal and symmetric at 0. Because the LHS
of (2.39) is continuous, there exists a point δ∗e in [−δ, 0] such that (2.38) is satisfied. It
means that e∗H−e∗L ≥ −δ, i.e., xH +e∗H ≥ xL+e∗L. Therefore, there exists an equilibrium
such that E(V ∗H) = xH + e∗H ≥ xL + e∗L = E(V ∗L ).

For (i)(c), if η = 1/2, again because g(·) is symmetric, by (2.36), the LHSs of (2.34)
and (2.35) are equal. Hence, the RHSs of (2.34) and (2.35) satisfy C ′(e∗H) = C ′(e∗L). By
the assumptions C ′′(·) > 0, we have e∗H = e∗L. Thus, by C ′(e∗H) = C ′(e∗L) = Al

2 (g(0) +
g(xH − xL)), we obtain

el∗H = el∗L = C ′
−1
(
Al

2 (g(0) + g(xL − xH))
)
. (2.41)

To compare the expected performances, if η = 1
2 , E(V ∗H) = xH + e∗H ≥ xL + e∗L = E(V ∗L )

because e∗H = e∗L that was just proved and xH ≥ xL by the assumption.

(ii) We firstly derive the equilibrium effort in the simultaneous contest. For the
simultaneous contest, both contestants are endowed with xH and xL, then the winning
probability of contestant i is P{xH + xL + e◦i + ε1i + ε2i ≥ xH + xL + e◦j + ε1j + ε2j} =
G◦(e◦i − e◦j). If contestant j adopts the equilibrium strategy e◦∗, then the expected payoff
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to contestant i is E(usimi (e◦i )) = AG◦(e◦i − e◦∗)− C◦(e◦i ). By (2.1), the equilibrium effort
is e◦∗ = C◦

′−1(Ag◦(0)).

Now we compare the two contest mechanisms with ηl = 1/2, l = 1, 2. If ηl = 1/2,
by (2.41), we have V l∗

i = xi + C ′−1
(
A
2 (g(0) + g(xL − xH))/2

)
+ εl, where i = H or

L. If ηl = 1/2, the expected best performance in the sub-contest l, l = 1, 2, is V l =
E(V l∗

L(2))/4 + E(max{V l∗
H , V

l∗
L })/2 + E(V l∗

H(2))/4. Since E(V ∗H) ≥ E(V ∗L ), V l∗
H ≥st V l∗

L , we
have E(V l∗

H(2)) ≥ V l ≥ E(V l∗
L(2)). Because sub-contest 1 and 2 are identical, by denoting

V ∗H(2) = V 1∗
H(2) = V 2∗

H(2), V ∗L(2) = V 1∗
L(2) = V 2∗

L(2), and E(ε(2)) = E(ε1(2)) = E(ε2(2)), we have
2E(V ∗H(2)) ≥ V seq ≥ 2E(V ∗L(2)). Equivalently,

V seq ≤ 2xH + 2C ′−1
(
A

4 (g(0) + g(xL − xH))
)

+ E(ε(2)), (2.42)

V seq ≥ 2xL + 2C ′−1
(
A

4 (g(0) + g(xL − xH))
)

+ E(ε(2)). (2.43)

For the simultaneous contest, e◦∗ = 2C ′−1 (Ag◦(0)), so the expected best performance in
the simultaneous contest is V sim = xH +xL + 2C ′−1 (Ag◦(0)) +E(ε◦(2)) where ε◦ = ε1 + ε2.
By (2.42),

V seq − V sim ≤ xH − xL + 2
ρ

ln
(
g(0) + g(xL − xH)

4g◦(0)

)
+ 2E(ε(2))− E(ε◦(2))

≤ xH − xL + 2
ρ

ln
(
g(0)

2g◦(0)

)
+ 2E(ε(2))− E(ε◦(2)), (2.44)

where the second inequality is because g(·) achieves the maximum value at 0. Since
2g◦(0) > g(0), ln

(
g(0)

2g◦(0)

)
< 0, thus 2

ρ
ln
(

g(0)
2g◦(0)

)
is increasing in ρ > 0. Moreover,

lim
ρ→0

2
ρ

ln
(

g(0)
2g◦(0)

)
= −∞. Because xH − xL ≥ 0, and by Lemma 2.3, 2E(ε(2))−E(ε◦(2)) > 0.

By (2.44), there exists ρ′′ > 0 such that when ρ ≤ ρ′′, ∆ = V seq − V sim ≤ 0.

By (2.43), we have

V seq − V sim ≥ xL − xH + 2
ρ

ln
(
g(0) + g(xL − xH)

4g◦(0)

)
+ 2E(ε(2))− E(ε(2))

≥ xL − xH + 2
ρ

ln
(
g(0)

4g◦(0)

)
+ 2E(ε(2))− E(ε(2)). (2.45)

Again, since 2g◦(0) > g(0), ln
(

g(0)
4g◦(0)

)
< 0, thus 2

ρ
ln
(

g(0)
4g◦(0)

)
is increasing in ρ, and

lim
ρ→∞

2
ρ

ln
(

g(0)
4g◦(0)

)
= 0. By Lemma 2.3, 2E(ε(2))−E(ε(2)) > 0. If xH−xL < 2E(ε(2))−E(ε◦(2)),

xL − xH + 2E(ε(2))− E(ε◦(2)) > 0. By (2.45), there exists ρ′′ > 0, such that when ρ ≥ ρ′′,
∆ = V seq − V sim ≥ 0.
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2.10 Numerical Experiments

For the heterogeneous expertise models studied in Section 2.6, if ηl 6= 1/2, l = 1, 2,
there is no closed form solution for the equilibrium efforts in the sequential contest. We
perform the following numerical tests. In these tests, we restrict our attention to the
cases that xH are xL are close to each other. In particular, we let A = 1, w = 1/2,
ε ∼ N(0, 1), and η1 ∈ {0.2, 0.4, 0.6, 0.8} (η2 = 1 − η1). For the heterogeneous cost
function model, in each of Figures B.1(a) – (d), different curves correspond to different
values of ∆ with a given xH/xL ∈ {1, 2, . . . , 10}. For the heterogeneous starting point
model, in each of Figures B.2(a) – (d), different curves correspond to different values of
∆ with xH−xL ∈ {0, 1, . . . , 10}. All the figures shows that for ηl 6= 1/2, if xH and xL are
sufficiently close, then there exists a threshold ρ̃ such that if ρ ≥ ρ̃, the sequential contest
dominates, i.e., ∆ ≥ 0, and if ρ ≤ ρ̃, the simultaneous contest dominates, i.e., ∆ ≤ 0.
These observations are consistent with our results in Section 2.4.4 with homogenous
expertise.
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Figure 2.4: Heterogeneous Cost Functions
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(c) η1 = 0.6, η2 = 0.4, xH/xL ∈ {1, 2, . . . , 10}
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Figure 2.5: Heterogeneous Starting Points
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Chapter 3

Bundling with Crowdsourced
Products

3.1 Introduction

As consumers buying habit are trending toward simpler and more convenient experi-
ence, more and more companies tend to provide subscription services especially in the
e-commerce market. Some streaming media providers such as Spotify, Netflix and Ap-
ple music allow consumers to access to video or music collections by charging monthly
fees. Other service providers such as OneGo offer the option of subscribing flight tickets,
thus consumers whose work requires frequently travelling may benefit by the subscrip-
tion service. As digital products are heterogeneous in their quality and popularity, media
companies cannot evenly allocate the collected subscription fees. In some platforms, the
total revenue is allocated according to the realized contributions by each crowdsourced
product. For example, Spotify allocates its monthly revenue by the proportion of an
artist’s number of streams among the total number of streams (see Figure 3.1, Spoti-
fy’s Royalty System1). In other platforms, the subscription providers do not share the
streaming information among the product suppliers, and they might allocate the total
revenue according to the expected quality or popularity of different products (see Flint
and Fritz (2015)).

In contrast to the traditional manufacturing industry, crowdsourced digital products
or services have advantages of being easily spread and electronically stored. Without
territory limit, consumers’ heterogeneous preferences directly determine the royalties of
artists with different popularity. Moreover, since the subscription platform often contains

1https://www.spotifyartists.com/spotify-explained/

55
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Figure 3.1: Spotify’s Royalty System

a large number of digital products, the pricing strategy for the subscription fee is deter-
mined by the platform owner. Therefore, there is no “double marginalization” problem,
but the product suppliers may lose the control of pricing their own products. Finally, the
revenue of a supplier for streaming through the subscription service does not depend on
the “pay-per-use” system in which the revenue of a supplier does not affect the revenue
of another supplier. Under the revenue sharing policies mentioned above, the revenue
of a supplier not only depends on the feature of his own product, but also depends on
the feature of the products by other suppliers. Evidence shows that some music artists
are not willing to join the subscription platform. Though such evidence may caused by
various reasons, one of the most salient ones may be the unequal revenue allocation. As
a result, we intend to answer a question: how does the revenue sharing policy in the sub-
scription platform influence the incentive compatiability of different product suppliers?
When there is incentinve imcompatiablility exists in the system, side payments need to
be made to sustain the business.

Different subscription providers follow different ways of allocating the revenue among
the product suppliers. Some subscription providers, such as Spotify, publish the monthly
streams for all the product suppliers, and allocate the total revenue to those suppliers
based on the contingent performance of their products. We call this “contingent revenue
sharing policy.” Other subscription providers, such as Netflix, do not share the streaming
information among the product suppliers, they may allocate the revenue according to
the expected quality or popularity of the product. We call this “pre-committed revenue
sharing policy.”

The subscription provider makes the pricing decision. However, the derivation of the
optimal pricing strategy of a large number of heterogeneous products may be analytically
intractable. We resorts to a stylized model with two different products and examine
two widely accepted specifications of products. In the first specification, the mean and
variance of a consumer’s valuation of a product is higher than that of another product, but



www.manaraa.com

Chapter 3. Bundling with Crowdsourced Products 57

both valuations have the same coefficient of variance (CV). Such specification has been
widely used to characterize the high-valuation and low-valuation products, see, Bhargava
(2013) 2. The second one is that those products are differentiated by the levels of the
valuation dispersion. The popular product has a low valuation dispersion whereas the
niche product has a high valuation dispersion. The valuations of the two products have
the same mean value, but the valuation of the popular product has a lower dispersion
than that of the niche product (see, e.g., Johnson and Myatt (2006) and Bar-Isaac et al.
(2012)).

For the first specification, we find that the high-valuation product supplier may pre-
fer to join the subscription platform while the low-valuation product supplier may prefer
the separate sales under both revenue sharing policies. In contrast to the separate sales
in which the revenue of each supplier only depends on consumer’s valuation of his own
product, the revenue sharing policies in the subscription platform introduces the inter-
dependency of the firms’ revenues on the consumer’s valuations of both products. Thus,
the high-valuation product can have an overwhelming proportion of streams if the t-
wo products are sufficiently different, i.e., the mean valuations are far apart. Our first
result shows that the revenue allocation scheme for subscription service may create in-
centive incompatibility. Comparing between the contingent and pre-committed revenue
sharing policies, we find that the high-valuation product supplier tends to prefer the pre-
committed policy while the low-valuation product supplier tends to favor the contingent
policy. The high-valuation product has a higher uncertainty of valuation in the market.
By the contingent policy, the revenue of the high-valuation product supplier is largely in-
fluenced by the uncertainty of consumer’s valuation. However, the pre-committed policy
to some extent eliminates such uncertainty and the revenue allocation mainly depends
on the mean valuation of those two products. Because the total revenue remains the
same under both policies, if the high-valuation product supplier obtains a higher revenue
under the pre-committed policy than under the contingent policy, then the low-valuation
product supplier will earn a lower revenue.

For the second specification, the results are reversed. Under either revenue sharing
policy, the popular product supplier tends to prefer the separate sales, while the niche
product supplier may prefer to join the subscription platform. In the separate sales,
since the valuation of the popular product is more clustered than the niche product,
the popular product may cover the whole market but the niche product covers only a
fraction of the market. However, in the subscription platform, even with the optimal

2In our model, the valuations of the two products follow uniform distributions U(0, a1) and U(0, a2),
and a1 ≤ a2.
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pricing strategy, the bundling sales can only cover a fraction of the market. Under the
contingent or pre-committed policies in the platform, the popular product supplier may
earn a less revenue in the subscription service than in the separate sales. Since the total
revenue is higher in the subscription service than in the separate sales, the niche product
supplier can earn a higher revenue in the subscription platform. Comparing between the
contingent and pre-committed revenue sharing policies, we find that the popular product
supplier tends to prefer the contingent policy while the niche product supplier may prefer
the pre-committed policy. Since the valuation of the niche product has a larger dispersion
than the popular product, the small sales number of the niche product may be alleviated
when the popular product’s sales is also realized as low under the contingent policy.
Under the pre-committed policy, the revenue alloaction is almost determined by the
mean valuation. Therefore, the niche product supplier may earn a higher revenue under
the pre-committed policy than under the contingent policy. Meanwhile, the popular
product supplier will earn less revenue under the pre-committed policy than under the
contingent policy.

Furthermore, we examine an alternative mechanism, the mixed bundling sales, by
some subscription providers to mitigate the unequal revenue allocation under the con-
tingent revenue sharing policy. Mixed bundling is such that some products are sold
separately in addition to the bundle in the subscription platform. For example, Apple
Music also allows consumers to purchase single songs other than signing up for a sub-
scription service. Amazon offers kindle unlimited reading service while readers have the
option to buy single volume of e-books. In the mixed bundling, the product supplier
earns the revenue in the separate sales of his product in addition to a fraction of the rev-
enue in the bundling sales. As mixed bundling further changes the market segmentation,
we find that both product suppliers may have incentive to join the subscription platform.

3.2 Literature Review

Product bundling is extensively studied in the marketing, economics, and information
system. The earliest work on bundling by Stigler (1963) indicates the advantage of
packaging two or more products to capture a larger return. Later Adams and Yellen
(1976) introduced a two-dimensional graphical framework for analyzing bundling as a
device for price discrimination. They suggest that bundling can increase profits if the
valuations of the two goods are negatively correlated. The more formal analysis by
Schmalensee (1984) and McAfee et al. (1989) also focused on bundles of two goods.
Schmalensee (1984) assumed a bivariate Gaussian distribution of reservation prices, and
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found that bundling dominates separate sales if the valuations are independent or slightly
positively correlated. Later on, McAfee et al. (1989) derived a set of conditions under
which mixed bundling of two goods dominates unbundled sales.

More recently, there are many streams of work over the bundling. One stream of stud-
ies focuses on the pricing strategy and comparison of mixed bundling and pure bundling.
Eckalbar (2010) provides an analytical expression for optimal mixed bundling under zero
marginal costs. While our research focuses on the crowdsourced digital products, the
marginal cost is assumed to be zero. Our paper is based on the optimal pricing theory in
Eckalbar (2010). Since the pricing strategy for bundling products with positive marginal
cost may be intractable for a closed form result, Bhargava (2013) derives a closed-form
approximation of the optimal bundling price. Hitt and Chen (2005) allowed consumers
to choose a fixed quantity of goods for a fixed price and showed that bundling of low
marginal cost goods outperforms separate sales. Bhargava (2012) examine the different
distribution structures for the bundling sales. In the structure that a downstream retailer
combines component goods sourced from separate manufacturers. The retailer may not
prefer the bundling sales because of the channel conflicts.

Another stream of studies investigates asymptotic results when a large number of
information goods are being bundled. Hanson and Martin (1990) derive the compu-
tational optimal bundling pricing strategy for a large number of products. Bakos and
Brynjolfsson (1999) find that bundling very large numbers of unrelated information goods
achieves greater profit and greater economic efficiency by assuming that the valuation of
the products are uniformly distributed. Later on, Bakos and Brynjolfsson (2000) extend
their model to consider the competition between bundling providers. Fang and Norman
(2006) examine the optimality of the bundling strategy by considering a large number
of products with symmetric log-concave distributed valuations. Geng et al. (2005) ex-
amines the optimality of bundling when consumer’s values decline with the number of
information goods consumed. Prasad et al. (2010) compared the pure bundling and a
special case of partial mixed bundling where one product is set apart and other products
are bundled.

For the subscription service, Wang et al. (2015) examine the pay-per-use and sub-
scription of the main products and ancillary services. By the analytical characterization
of those services, they derive the conditions on which the subscription is optimal. Allon
et al. (2011b) study whether the firm should bundle the main service and ancillary service
together, or unbundle them and set single price for each. Randhawa and Kumar (2008)
employ a Markov chain model to characterize customer behavior and compare the benefit
between the subscription option that limits the number of concurrent rentals in return
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for a flat fee per-unit time and a pay-per-use option with no such restriction.
As far as we know, the existing literature did not look into the revenue sharing

problem of bundling in the digital product market. Our work investigates the welfare of
product suppliers when contracting with bundling providers. While we provide analytical
expressions of profit allocation schemes, our research provides some explanations for
why product suppliers may prefer or not prefer to join the subscription platform. With
the result that the revenue sharing policy in the subscription platform creates incentive
incompatibility, the platform owner can make side payments to some suppliers to sustain
the operations. Thus, our work provides insights for the firm about what to offer to
different product suppliers.

3.3 Model Setup

Assume that there are two product suppliers, supplier 1 and 2. The products produced
by the two suppliers are denoted by A1 and A2 respectively. A potential customer holds
the valuation of products A1 and A2 as X and Y which are random variables. Random
variables X and Y are independently following uniform distributions over [0, a1] and
[0, a2] respectively, a1, a2 > 0. The cumulative probability density functions (CDF) of X
and Y are denoted by F (·) and G(·) respectively, and the probability density functions
(PDF) of them are denoted by f(·) and g(·). Assume that a1 ≤ a2, then X is first order
stochastically dominated by Y , i.e., X ≤FSD Y , see, Shaked and Shanthikumar (2007).
Since the CV is

√
3/3 for X and Y , the valuations of both products have the same

variability. In this specification, product A1 is the low-valuation product and product
A2 is the high-valuation product. Without loss of generality, the market size is assumed
to be 1. The assumptions about two products and uniform distributions have been
widely accepted in the literature, see, e.g., Bhargava (2013) and Eckalbar (2010). Such
specification can be used to characterize digital products that are differentiated by their
quality.

In the separate sales, the two suppliers do not join the subscription platform, thus
customers can only buy those two products separately. Denote the prices of A1 and A2

in the separate sales by p1 and p2, respectively. Since the products are digit-type, we
neglect production cost for those products. A potential customer will buy the product
A1 only if his realized value x ≥ p1, thus the expected revenue of product A1 can be
characterized by R1 = [1− F (p1)]p1. Similarly, the expected revenue of product A2 can
be characterized by R2 = [1−G(p2)]p2.

In the pure bundling sales, the two suppliers commit to join the subscription platform.
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The platform sells those two products together as a bundle and sets a single price p0 for
it. Then, a potential customer will buy the bundle only if his realized valuation of those
two products is greater than or equal to the bundle price. Denote the random variable
V = X + Y with CDF H(·) and PDF h(·) which is the convolution of the PDFs f(·)
and g(·), i.e., h = f ◦ g. The expected revenue for the pure bundling sales is then
Ru = [1−H(p0)]p0.

3.4 Revenue Comparison

Lemma 3.1 shows the optimal pricing strategies for the separate sales and pure bundling
sales, p∗1, p∗2 and p∗0, and the revenue under the optimal pricing strategy, R∗1, R∗2 and R∗u.

Lemma 3.1 (Pricing Strategy I) (i) The optimal pricing strategies for the sep-
arate sales is p∗1 = a1/2 and p∗2 = a2/2. The revenue under the optimal pricing
strategy is R∗1 = a1/4 and R∗2 = a2/4.

(ii) The optimal pricing and revenue for the pure bundling sales is p∗0 =
√

2a1a2
3 and

R∗u = 2
3

√
2a1a2

3 if 1 ≤ a2/a1 < 3/2, and p∗0 = 2a2+a1
4 and R∗u = (2a2+a1)2

16a2
if a2/a1 ≥

3/2.

Figure 3.2 illustrates the optimal pricing strategies for the separate and pure bundling
sales. In Figure 3.2(a), the customer whose valuation of the two products is in the grey
area will buy a single product, and the customer whose valuation is in the dark grey area
will buy both products. For the pure bundling sales, Figure 3.2(b) and (c) characterize
two situations: if a2/a1 < 3/2, p∗0 < a1, and if a2/a1 ≥ 3/2, a1 ≤ p∗0 ≤ a2. For the
separate sales, the revenue for each product is shared by its supplier and its distribution
company. For the pure bundling sales, the revenue under the optimal pricing strategy
is the total revenue that will be shared by the retailer and two suppliers if the retailer
commits to provide the subscription service on the platform.

3.4.1 Contingent Revenue Sharing Policy

In this section, we compare the revenue of each supplier between the separate sales and
pure bundling sales. If those suppliers commit to join the subscription platform, the
revenue of the retailer is a fraction of the total revenue. Denote the fraction by r ∈ [0, 1].
Then the revenue for the retailer is rR∗u in the pure bundling sales. If those suppliers
do not join the platform, they have to pay a distrbiution fee as a fraction of the revenue
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Figure 3.2: Optimal Pricing Strategy I

(a) Separate sales (b) Pure bundling sales (a2/a1 < 3/2) (c) Pure bundling sales (a2/a1 ≥ 3/2)

in the separate sales to their distribution companies. Here, we assume that the fraction
of the revenue for the distribution fee is r, i.e., the royalty rates are the same in the
separate and pure bundling sales. If the revenues of suppliers 1 and 2 in the separate
sales under the optimal pricing strategy are denoted by Rs1 and Rs2 respectively, then
Rs1 = (1 − r)R∗1 and Rs2 = (1 − r)R∗2. Now we model the contingent revenue sharing
policy (Spotify’s strategy) in the pure bundling sales.

With the contingent revenue sharing policy, denote the revenue of supplier i, i = 1, 2,
by Rc

ui. The revenue allocation depends on the amount of streams for each product over
the total amount of streams. We assume that the amount of streams is a function of
the valuation V(·) which is increasing. That is, the higher the valuation, the more times
the customer will enjoy the digital product. For simplicity, we examine the function
V(x) = x. Similar result in this section can be obtained with a general function. Denote
the fraction of the revenue obtained by supplier 1 by α, thus the fraction of the revenue
for supplier 2 is 1 − α. If the bundle price is p∗0, the α under the contingent revenue
sharing policy is

α = E(Proportion of streams|customer buys the bundle)

= E
(

X

X + Y

∣∣∣∣X + Y ≥ p∗0

)
. (3.1)

Then the revenue under the contingent revenue sharing policy for those two suppliers
would be Rc

u1 = α(1 − r)R∗u and Rc
u2 = (1 − α)(1 − r)R∗u. Since the optimal pricing

strategy p∗0 is a funciton of the variables a1 and a2, the allocation α only depends on the
values of a1 and a2. Proposition 3.2 compares Rsi and Rc

ui, i = 1, 2, for different values
of a2/a1.

Proposition 3.2 (Separate Sales vs. Pure Bundling Sales) There exists a thresh-
old k∗ > 1, if 1 ≤ a2/a1 ≤ k∗, both suppliers will prefer the pure bundling sales, i.e.,
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Rc
ui ≥ Rsi, i = 1, 2. However, if a2/a1 > k∗, supplier 1 will prefer the separate sales while

supplier 2 will prefer the pure bundling sales, i.e., Rc
u1 < Rs1 and Rc

u2 > Rs2.

Proposition 3.2 shows that if the two products are similar, i.e., 1 ≤ a2/a1 ≤ k∗, then
both suppliers can earn a higher revenue in the pure bundling sales than in the separate
sales. If those two products are sufficiently different, i.e., a2/a1 > k∗, then the high-
valuation product supplier will earn more revenue in the pure bundling sales than in the
separate sales, but the low-valuation product supplier will earn less revenue in the pure
bundling sales than in the separate sales.

If those two products are similar, the revenue of those two suppliers are similar in
the separate sales. In the pure bundling sales, since the two products are similar, by the
contingent revenue sharing policy, the revenue shares of the two supplier must be similar,
i.e., α is approximately equal to 1/2. Because the pure bundling sales expands the market
with a lower total price than the separate sales, the pure bundling sales captures a larger
return. Therefore, the total revenue of the pure bundling sales is greater than or equal
to that of the separate sales, i.e., R∗u ≥ R∗1 +R∗2. If those suppliers evenly share the total
revenue, both can benefit by joining the subscription platform.

If those two products are sufficiently different, the proportion of the revenue share
for supplier 1 can be extremely small. However, the benefit of the pure bundling sales in
capturing a larger return is bounded.3 In the separate sales, the revenue of each supplier
depends only on the valuation of his or her product, however in the pure bundling sales
the revenue of each product supplier depends on the conditional expected proportion of
the valutions for both products. As a result, if the two products are sufficiently different,
the revenue share of supplier 1 can be extremely small under the contingent revenue
sharing policy. Therefore, supplier 1 will prefer the separate sales and supplier 2 will
prefer the pure bundling sales. The intuition is that in the pure bundling sales, the
allocation of revenue depends on the relative valuations of those two products, thus the
market share of the niche product is cannibalized by the popular product.

Another explanation is that if the two products are sufficiently different, then the total
revenues of the separate sales and pure bundling are similar, because the total revenue
mainly depends on the sales of the popular product. In the separate sales, the proportion
of the revenue for supplier 1 is a1

a1+a2
. However, in the pure bundling sales with contingent

revenue sharing policy, the proportion of the revenue for supplier 1 is E( X
X+Y |X+Y ≥ p∗0).

By Figure 3.2 (c), we find that if both products are sufficiently different, p∗0 > a1. Since
3The result that the benefit of the pure bundling sales in capturing a larger return is bounded can

be simply verified by considering the extreme case that the whole market has been covered with the
optimal pricing strategy.
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the expectation is conditional on X + Y ≥ p∗0, it is high probability that the reason for
consumers to buy the bundle is that they favor the popular product. That is to say, the
majority of consumers are essentially intended to buy the popular product. As a result,
the proportion of revenue for supplier 1 is lower in the pure bundling sales than in the
separate sales, i.e., E( X

X+Y |X + Y ≥ p∗0) < a1
a1+a2

. Since the total revenues of both sales
are similar, supplier 2 earns more revenue in the pure bundling sales than in the separate
sales.

3.4.2 Equilibirum

Now we examine the behavior of those two suppliers in the equilibrium. The sequence of
events is as follows. In stage 1, the retailer commits to use the pure bundling sales on the
subscription platform, and then he selects the royalty rate r ∈ [0, 1]. In stage 2, the two
suppliers decide whether to join the platform by considering the revenue in the separate
and pure bundling sales. We restrict our attention on the case that the retailer picks
the royalty rate r that is the same with the royalty rate of the distribution company. In
the non-cooperative game, the action of those two suppliers are “join” or “not join” the
platform. Table 3.1 summmarizes this game given that the retailer picks the royalty rate
r.

Table 3.1: Payoff Matrix

supplier 1 does not join supplier 1 joins

supplier 2 does not join (Rs1, Rs2) (Rs1, Rs2)

supplier 2 joins (Rs1, Rs2) (Rc
u1, R

c
u2)

The equilibrium depends on the value of a2/a1. If a2/a1 < k∗, A strong equilibrium
exists such that both suppliers join the platform, and a weak equilibrium exists such
that both suppliers do not join the platform. If a2/a1 = k∗, then a weak equilibrium
exists such that both suppliers join or do not join the platform. If a2/a1 > k∗, then by
Proposition 3.2, Rc

u1 < Rs1, only the weak equilibrium exists such that supplier 1 does
not join the platform, and supplier 2 may or may not join the platform.

In the equilibrium, if the two products are similar, then both suppliers may prefer
to join the subscription platform. If the two products are sufficiently different, then the
high-valuation product supplier may join or not join the platform but the low-valuation
product supplier will not join the platform.
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3.5 Pre-committed Revenue Sharing Policy

In this section, we examine the case in which the retailer commits to provide the pre-
committed revenue sharing policy (Netflix’s strategy) in the pure bundling sales. In
contrast to the contingent policy that determines the revenue allocation according to
the ex post expectation of the proportion of streams, in the pre-committed policy, the
revenue of each supplier relies on the ex ante expectation of the proportion of streams.

Under the pre-committed revenue sharing policy, denote the revenue of supplier i,
i = 1, 2 in the pure bundling sales by Rp

ui. Denote the proportion of the revenue obtained
by supplier 1 by β, and then the proportion of the revenue for supplier 2 is 1− β. Under
the optimal bundling pricing strategy p∗0, the proportion β is

β = E(Streams of product A1|X + Y ≥ p∗0)
E(Total streams|X + Y ≥ p∗0)

= E(X|X + Y ≥ p∗0)
E(X|X + Y ≥ p∗0) + E(Y |X + Y ≥ p∗0) . (3.2)

The revenue under the pre-committed revenue sharing policy for the two suppliers would
be Rp

u1 = β(1 − r)R∗u and Rp
u2 = (1 − β)(1 − r)R∗u. To compare the revenue of each

suppliers in different revenue sharing policies, we have the following results.

Proposition 3.3 (Pre-committed Revenue Sharing) (i) There exists a thresh-
old k̄∗ > 1, if 1 ≤ a2/a1 ≤ k̄∗, both suppliers will prefer the pure bundling sales, i.e.,
Rp
ui ≥ Rsi, i = 1, 2. However, if a2/a1 > k̄∗, supplier 1 will prefer the separate sales

while supplier 2 will prefer the pure bundling sales, i.e., Rp
u1 < Rs1 and Rp

u2 > Rs2.

(ii) The pre-committed revenue sharing policy β is less than the contingent revenue
sharing policy α. Supplier 1 prefers the contingent policy while supplier 2 prefers
the pre-committed policy, i.e., Rp

u1 ≤ Rc
u1 and Rp

u2 ≥ Rc
u2.

Proposition 3.3 (i) compares the separate sales and the pure bundling sales under the
pre-committed revenue sharing policy. The result is similar to that of Proposition 3.2.
The pure bundling sales expands the market size by a lower total price and thus captures
a larger return than the separate sales. If those two products are similar, then they
approximately evenly share the total revenue evenly, and thus both suppliers can benefit
by joining the subscription platform. However, if those two products are sufficiently
different, the low-valuation product supplier obtains less revenue in the pure bundling
sales than in the separate sales, because the revenue allocation policy is based on the
comparison of the amount of streams of those two products. Since the number of streams
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is increasing in the valuation of the product, in the separate sales, the revenue of the low-
valuation product depends on the conditional expectation of its own valuation, whereas
in the pure bundling sales, the proportion of the total revenue can be extremely small
due to the large differency of the two products. As a result, the low-valuation product
supplier may not prefer to join the subscription platform.

Proposition 3.3 (ii) compares the revenue of each supplier between the contingent
and pre-committed policies. It shows that the high-valuation product supplier tends
to prefer the pre-committed policy while the low-valuation product supplier tends to
prefer the contingent policy. By our assumption of the distributions, the valuation of
the high-valuation product has the larger variation and mean than that of the low-
valuation product. The difference of the variations has a great influence on the proportion
of the revenue obtained by the high-valuation product supplier under the contingent
policy. Even though the high-valuation product has a larger mean valuation than the
low-valuation product, the higher variation of the valuation leads to a relatively low
proportion of the total revenue. However, under the pre-committed policy, the proportion
of the total revenue mainly depends on the mean valuation of both products, but is almost
not influenced by the variation. As a result, the popular product can achieve a higher
revenue under the pre-committed policy than under the contingent policy.

For the retailer, since those revenue sharing policies have no influence on the demand
side, the optimal pricing strategy does not change. With the same royalty rate r, the
retailer earn the same revenue in the pure bundling sales with both policies.

3.6 Extension: Mixed Bundling Sales

In this section, we relax the pure bundling sales “constraint”, and allow both suppliers to
have their separate sales in addition to the bundling sales in the subscription platform.
However, in practice, the mixed bundling sales may not be launched due to various
reasons. According to Bhargava (2012) and Fang and Norman (2006), the retailer may
prefer to stick to the pure bundling sales because of the historical practice. Moreover, the
mixed bundling sales may not be implemented due to the technogical challenges. Finally,
the mixed bundling sales may not be implemented because of the antitrust concern by
the retailer.

In the mixed bundling sales, the revenue for each supplier would be the summation
of the separate sales and a fraction of the revenue in the bundling sales. We firstly show
the optimal pricing strategy in the mixed bundling sales. Then we derive the revenue of
both suppliers under the contingent revenue sharing policy.
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Denote the prices of the products A1 and A2 in the mixed bundling sales by pm1 and
pm2 respectively. The price of the bundle is denoted by pm0. The revenue of the bundle
is Rm0, and the revenue for supplier 1 and 2 in the bundling is denoted by Rm1 and
Rm2 respectively, i.e., Rm0 = Rm1 + Rm2. Now we show the optimal pricing strategy
p∗m1, p∗m2 and p∗m0 for the mixed bundling sales. To achieve the feasible solution, several
reasonable constraints will be added. First, the platform sets individual and bundle
prices so that pm0 ≤ pm1 + pm2, otherwise no one would have reason to buy the bundle.
Second, pm0 ≥ pm1 and pm0 ≥ pm2, because otherwise consumers could get both products
for less than the price of one. The revenue under the optimal pricing strategy is denoted
by R∗m0, R∗m1 and R∗m2. The verification follows the way proposed by Eckalbar (2010).

Given the option of separate sales in the subscription platform, providers endogenous-
ly decide which mechanism to implement (partial mixed bundling or full mixed bundling)
so as to achieve the most total revenue.

Lemma 3.4 (Pricing Strategy II) The optimal pricing strategy of the mixed bundling
sales is

(i) p∗m1 = 2a1
3 , p∗m2 = 2a2

3 , p∗m0 = 1
3(2a1 + 2a2 −

√
2a1a2) if a2/a1 < 2,

(ii) p∗m1 = 2a1
3 , p∗m2 = 1

6(3a2 + 2a1), p∗m0 = 1
6(3a2 + 2a1) if a2/a1 ≥ 2.

Proposition 3.4(i) characterizes the full mixed bundling sales and (ii) characterizes the
partial mixed bundling sales. Figure 3.3(a) and (b) illustrate the optimal pricing strategy
in the mixed bundling sales. If the two products are sufficiently different, then the partial
mixed bundling sales will be optimal, and if the two products are similar, then the full
mixed bundling sales will be optimal.

3.6.1 Partial Mixed Bundling Sales

In this section, we examine the revenue of the two suppliers in the partial mixed bundling
sales. With the contingent revenue sharing policy, denote the fraction of the revenue in
the bundling sales for product A1 in the partial mixed bundling sales by γcp, i.e.,

γcp = E
(

X

X + Y

∣∣∣∣X + Y ≥ p∗m0, Y ≥ p∗m0 − p∗m1

)
.

Then the fraction of the revenue for product A2 is 1−γcp. The total revenue of supplier 1
is Rc

p1 = (1− r)(γcpR∗m0 +R∗m1) and the revenue of supplier 2 is Rc
p2 = (1− r)(1− γcp)R∗m0.

Proposition 3.5 compares the revenue in the different sales strategies for supplier 1 and
2.
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Figure 3.3: Optimal Pricing Strategy II

(a) Full mixed bundling sales (a2/a1 < 2) (b) Partial mixed bunlding sales (a2/a1 ≥ 2)

Proposition 3.5 (Partial Mixed Bundling Sales) (i) Compared with the sepa-
rate sales, both suppliers prefer the partial mixed bundling sales, i.e., Rc

p1 ≥ Rs1

and Rc
p2 ≥ Rs2.

(ii) Compared with the pure bundling sales, supplier 1 prefers the partial mixed bundling
sales, while supplier 2 prefers the pure bundling sales, i.e., Rc

p1 ≥ Rc
u1 and Rc

p2 ≤
Rc
u2.

Now it is straightforward to compare the revenue in different sales strategies. Since the
partial mixed bundling will be implemented only if the two products are sufficiently dif-
ferent, Table 3.2 shows that the revenue ranking of the separate sales, pure bundling sales
and partial mixed bundling sales, if the two products are sufficiently different a2/a1 ≥ 2.

Table 3.2: Revenue Ranking (a2/a1 ≥ 2)

Retailer Supplier 1 Supplier 2

Separate 3rd 2nd 3rd

Pure Bundling 2nd 3rd 1st

Partial Mixed Bundling 1st 1st 2nd

By Proposition 3.5, we find that the partial mixed tends to be better than the separate
sales. However, the popular supplier can earn the most revenue in the pure bundling sales.
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3.6.2 Full Mixed Bundling Sales

Now we derive the revenue of those two suppliers in the full mixed bundling sales. Under
the contingent revenue sharing policy, the fraction of the revenue for product A1 in the
full mixed bundling sales is denoted by γcf , i.e.,

γcf = E
(

X

X + Y

∣∣∣∣X + Y ≥ p∗m0, X ≥ p∗m0 − p∗m2, Y ≥ p∗m0 − p∗m1

)

Then the fraction of the revenue for product A2 is 1− γcf . The total revenue for supplier
1 will be Rc

f1 = (1 − r)(γcfR∗m0 + R∗m1), and the total revenue for supplier 2 will be
Rc
f2 = (1 − r)((1 − γcf )R∗m0 + R∗m2). Proposition 3.6 compares the revenue in different

sales strategies for supplier 1 and 2.

Proposition 3.6 (Full Mixed Bundling Sales) (i) Compared with the separate
sales, both suppliers prefer the full mixed bundling sales, i.e., Rc

f1 ≥ Rs1 and Rc
f2 ≥

Rs2.

(ii) Compared with the pure bundling sales, supplier 1 prefers the full mixed bundling
sales, i.e., Rc

f1 ≥ Rc
u1. There exists a threshold k̂∗ ∈ [1, 2] such that if a2/a1 ≤ k̂∗,

supplier 2 prefers the full mixed bundling sales, i.e., Rc
f2 ≤ Rc

u2. If a2/a1 > k̂∗, the
second supplier prefers the pure bundling sales, i.e., Rc

f2 > Rc
u2.

Table 3.3 exhibits the revenue ranking for the separate sales, pure bundling sales and full
mixed bundling sales. We find that the full mixed bundling sales tends to be optimal if the
two products are similar. The number in the brackets shows the ranks if a2/a2 ∈ (k̂∗, 2].

Table 3.3: Revenue Ranking (a2/a1 ≤ 2)

Retailer Supplier 1 (a2/a1 > k̂∗) Supplier 2 (a2/a1 > k̂∗)

Separate 3rd 3rd (2nd) 3rd

Pure Bundling 2nd 2nd (3rd) 2nd (1st)

Full Mixed Bundling 1st 1st 1st (2nd)

3.7 Mean-Preserving Spread

In this section, we follow a different way of specifying the products on the subscription
platform, and examine the revenues of those suppliers in different sales strategies. We
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follow Johnson and Myatt (2006) in assuming that different products induce demand
rotations. To make the model be consistent with the model in the previous sections, we
assume that the valuations of those two products X and Y follow the uniform distribu-
tions over [0, 1] and [a, b] respectively. We impose that a > 0 and b < 1 (see Bar-Isaac
et al. (2012), p.p. 1152.)4 To simplify the analysis, we focus on the case that a+ b = 1,
that is, X and Y have the same mean but different variances. As a result, X is second
order stochastically dominated by Y , i.e., X ≤SSD Y . According to Johnson and Myatt
(2006), X is the niche product and Y is the popular product, and those two products
are differentiated in the dispersion of the consumer valuation.

Lemma 3.7 shows that the optimal pricing strategy in the separate and pure bundling
sales. Since a+b = 1, the mean value of the X is 1

2 , thus we can denote X ∼ U(1
2−σ,

1
2 +σ)

in which σ is half of the length of the uniform distribution. Thus, the condition on the
optimal pricing stratedy depends on the single parameter σ. We determine the pricing
strategy for different values of σ in the pure bundling sales.

Lemma 3.7 (Pricing Strategy III) (i) The optimal pricing strategy for the sep-
arate sales is p∗1 = 1

2 and p∗2 = max{1
4 + σ, 1

2 − σ}.

(ii) The optimal pricing strategy for the pure bundling sales is p∗0 = 3
4 if σ < 1

4 , and
p∗0 = 2a+

√
a2−6a+6b

3 if σ ≥ 1
4 .

Figure 3.4: Optimal Pricing Strategy III

(a) Separate sales (b) Separate sales
(c) Pure bundling sales

Figures 3.4 (a) and (b) illustrate the optimal pricing strategy for the separete sales
with different values of σ. If σ is sufficiently small, the whole market will buy product 2

4Bar-Isaac et al. (2012) follow a more general way of assuming the two uniform distributions, i.e.,
X ∼ U(ã, b̃), Y ∼ U(a, b) with a > ã and b < b̃. Since we consider the two-product case, any assumption
with the general form can be normalized to our model, i.e. X ∼ U(0, 1) and Y ∼ U(a, b).
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while a fraction of the market will buy product 1. This is consistent with our intuition
that the popular product may have a larger market coverage than the niche product.
Figure 3.4 (c) illustrates the optimal pricing strategy for the pure bundling sales.

Based on the optimal prcing strategies in Lemma 3.7, we compare the revenues of the
those two suppliers between the separate sales and pure bundling sales. Following the
same way in studying the first specification, we discuss two ways of allocating the revenue
in the pure bundling sales, the contingent revenue sharing policy and pre-committed
revenue sharing policy.

The revenue share under the contingent revenue sharing policy is determined by (3.1)
with different assumptions on the CDF of random variables X and Y . The revenue share
under the pre-committed revenue sharing policy is determined by (3.2). Proposition 3.8
shows the comparison of the revenues under different sales strategies for different values
of σ.

Proposition 3.8 (i) Comparing the pure bundling and separate sales, supplier 1 prefer-
s the pure bundling sales, i.e., Rc

u1 ≥ Rs1. There exists a threshold σ̄ such that if
σ ≥ σ̄, supplier 2 prefers the pure bundling sales, i.e., Rc

u2 ≥ Rs2, and if σ < σ̄,
supplier 2 prefers the separate sales, i.e., Rc

u2 < Rs2.

(ii) Supplier 1 prefers the pre-committed policy, i.e., Rc
u1 ≤ Rp

u1, while supplier 2 prefers
the contingent policy, i.e., Rp

u2 ≤ Rc
u2.

For Proposition 3.8(i), the result is similar to the result in Proposition 3.2. In Proposi-
tion 3.2, the valuation of product 1 is first order stochastically dominated by the valuation
of product 2, i.e., X ≤FSD Y . In Proposition 3.8, the valuation of product 1 is second
order stochastically dominated by the valuation of product 2, i.e., X ≤SSD Y . Unlike
before, Proposition 3.8(i) shows that the popular supplier will prefer the separate sales if
those two products are sufficiently different. The result has nothing to do with the mean
value of the valuation of the two products since we assume that X and Y have the same
mean but different variations. If the two products are sufficiently different, the popular
supplier tends to prefer the separate sales, whereas the niche supplier tends to favor the
bundling sales.

In the separate sales, the popular product almost covers the whole market by the
optimal pricing strategy, but the niche product only covers a fraction of the market.
However, in the pure bundling sales, even with the optimal bundling pricing strategy,
the bundle covers a fraction of the market. For the popular product supplier, the market
coverage is less in the bundling sales than in the separate sales. Though the bundling
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sales may earn a higher total revenue than the separate sales, the revenue of the popular
supplier is less in the pure bundling sales than in the separate sales.

For Proposition 3.8(ii), since the valuation of the two products have different disper-
sion. The niche supplier prefers the pre-committed policy since the valuations of the
niche product has a relatively high uncertainty, and pre-committed policy to some ex-
tent eliminates such uncertainty. For the popular supplier, the valuation of the popular
product has a relatively low uncertainty, but the advantage of the low uncertainty val-
uation has not been taken under the pre-committed policy. Because the total revenue
remains to be the same in both policies, if the niche supplier earns more revenue in the
pre-committed policy than in the contingent policy, then the popular supplier earns less
revenue in the pre-committed policy than in the contingent policy.

3.8 Conclusion

We investigate the influence of different revenue sharing policies on different suppliers
on the subscription platform. Given that some online platforms share the revenue by
calculating the proportion of streams for a digital product, we characterize two policies
that are commonly implemented. One is the contingent revenue sharing policy, and the
other is the pre-committed revenue sharing policy. By assuming that the subscription
provider commits to provide the pure bundling sales, we have the following results. First,
with the option of separate sales out of the subscription platform, we find that the high-
valuation product supplier may have the incentive to join the platform while the low-
valuation product supplier may not have the incentive to join the platform under both
policies. Moreover, the high-valuation product supplier may prefer the pre-committed
policy while the low-valuation product supplier may prefer the contingent policy. Second,
if the products are differentiated by the dispersion of consumer’s valuation, then the
popular product supplier may prefer the separate sales while the niche product supplier
may prefer to join the subscription platform. In the comparison between the two policies,
the popular supplier tends to prefer the contigent policy while the niche supplier tends to
prefer the pre-committed policy. Finally, we examine the mixed bundling sale in which
the subscription provider may include the separate sales of a product in addition to the
bundling sales. Results shows that under the contingent revenue sharing policy the mixed
bundling sales may be optimal.

We employ a stylized two-product model to characterize the subscription service.
Those results show how the heterogenity of the products affects the revenue earned
by the suppliers. There are several limitations to our model. First, we assume that
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consumer’s valuations about those two products are independent. By the classic result
about the bundling model, if the valuations of the two products are positively correlated,
the bundling sales may fail to achieve a higher revenue than the separate sales. In that
case, both suppliers may not want to join the subscription platform since the bundling
sales is no longer profitable. Thus, future research can take into account the correlated
valuation across those products. Second, we assume that the two products are known
to the whole market. In reality, perhaps the niche products may be only known by a
fraction of market, and this can be a possible reason of the heterogeneous valuation.
Moreover, the subscription platform can enhance the popularity of some products. Our
model does not consider the causality of the heterogenous valuations but directly assume
it, thus future research may characterize the subscription service in a more detailed level
and explore its influence over products’ popularity. Despite those limitations, our model
characterizes the revenue sharing policies in the subscription service, and captures the
unequal allocation of revenues due to the heterogenity of products. Our results may
explain the practice that some product suppliers do not prefer to join the subscription,
and help the subscription providers better design the revenue sharing contract.

3.9 Proofs.

Proof of Lemma 3.1. (i) A potential customer will buy the product A1 only if his realized
value x ≥ p1, thus the expected revenue of A1 can be characterized by R1 = [1−F (p1)]p1.
The FOC is given by 1 − F (p∗1) − f(p∗1)p∗1 = 0. Thus, p∗1 = (1 − F (p∗1))/f(p∗1). If the
valuation X follows the uniform distribution over [0, a1], p∗1 = a1/2. Similarly, the optimal
single price of product A2 is p∗2 = a2/2. The revenue under the optimal pricing strategy
is R∗1 = a1/4 and R∗2 = a2/4.

(ii) The price for the pure bundling sales is denoted by p0. Each customer holds the
realized value of the products in the bundle as x and y. The revenue for the bundle is
Ru = [1 − H(p0)]p0 where H(·) is the CDF of V = X + Y and h(·) is its PDF, i.e.,
h = f ◦ g. The PDF and CDF of V are

h(v) = (f ◦ g)(v) =
∫ v

0
f(v − y)g(y)dy =



v

a1a2
, for 0 ≤ v ≤ a1,

1
a2
, for a1 ≤ v ≤ a2,

a1 + a2 − v
a1a2

for a2 ≤ v ≤ a1 + a2.



www.manaraa.com

Chapter 3. Bundling with Crowdsourced Products 74

and

H(v) =



v2

2a1a2
, for 0 ≤ v ≤ a1,

v2 − (v − a1)2

2a1a2
, for a1 ≤ v ≤ a2,

1− (a1 + a2 − v)2

2a1a2
for a2 ≤ v ≤ a1 + a2.

The FOC of Ru is 1−H(p∗0)−h(p∗0)p∗0 = 0. For 0 ≤ p0 ≤ a1, 1−H(p0)−h(p0)p0 = 1− 3p2
0

2a1a2
.

Therefore, if 1 ≤ a2/a1 < 3/2, p∗0 =
√

2a1a2
3 and p∗0 is the maximum point over [0, a1].

Since it can be simply verify that if 1 ≤ a2/a1 < 3/2, [1 − H(p0)]p0 is decreasing over
p0 ∈ [a1, a1 +a2], p∗0 =

√
2a1a2

3 is the global maximum point if 1 ≤ a2/a1 < 3/2. Similarly,
for a1 ≤ p0 ≤ a2, 1 − H(p0) − h(p0)p0 = 1 − p2

0−(p0−a1)2

2a1a2
− p0

a2
. If 3/2 ≤ a2/a1 < ∞, the

maximum point is p∗0 = 2a2+a1
4 which solves the equation 1− p2

0−(p0−a1)2

2a1a2
− p0

a2
= 0. It can

be simply verify that p∗0 = 2a2+a1
4 is the global maximum point if 3/2 ≤ a2/a1 <∞.

Therefore, the revenue of bundling sales under the optimal pricing strategy is

R∗u =


2
3

√
2a1a2

3 , for 1 ≤ a2 <
3
2a1,

(2a2 + a1)2

16a2
, for a2 ≥ 3

2a1.

which are the results in Lemma 3.1.

Proof of Proposition 3.2. First, we derive the joint distribution of X
X+Y and X + Y .

Denote that U = φ1(X, Y ) = X
X+Y and V = φ2(X, Y ) = X + Y . Then the inverse

transformation is given by X = ϕ1(U, V ) = UV and Y = ϕ2(U, V ) = V −UV . The joint
density function of U and V is fU,V (u, v) = fX,Y (x, y)|J(x, y)|−1 where J(x, y) denotes
the Jacobian of the functions φ1(X, Y ) and φ2(X, Y ),

J(x, y) = det

 ∂φ1
∂x

∂φ1
∂y

∂φ2
∂x

∂φ2
∂y

 = y

(x+ y)2 −
−x

(x+ y)2 = 1
x+ y

.

As a result, the joint PDF of U and V is fU,V (u, v) = fX,Y (x, y)|J(x, y)|−1 = (x +
y)f(x)g(y) = vf(uv)g(v − uv). Since the random variable U ∈ [0, 1]. If X and Y are
uniformly distributed over [0, a1] and [0, a2] respectively, the joint PDF of U and V is

fU,V (u, v) =


v

a1a2
, for 0 ≤ vu ≤ a1 and 0 ≤ v(1− u) ≤ a2, (3.3)

0 otherwise.
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The ranges in (3.3) can be written as 0 ≤ v ≤ a1
u

and 0 ≤ v ≤ a2
1−u . Only one or other of

these ranges needs to be retained, depending on whether u is over
[
0, a1

a1+a2

]
or
[

a1
a1+a2

, 1
]
.

Thus, we have

fU,V (u, v) =



v

a1a2
, for 0 ≤ v ≤ a2

1−u and 0 ≤ u ≤ a1
a1+a2

, (3.4)
v

a1a2
, for 0 ≤ v ≤ a1

u
and a1

a1+a2
≤ u ≤ 1, (3.5)

0, otherwise.

Second, we derive the revenue sharing policy α. Given the optimal bundling price p∗0,
the PDF conditional on X + Y ≥ p∗0 is fU |V (u|V ≥ p∗0) =

∫∞
p∗0
fU,V (u, v)dv/(1 − H(p∗0)).

Given the optimal bundling price p∗0, the revenue sharing policy α = E
(

X
X+Y

∣∣∣X + Y ≥ p∗0
)

=
1

1−H(p∗0)
∫ 1

0
∫∞
p∗0
ufU,V (u, v)dvdu. The revenue sharing policy α depends on the value of p∗0.

If 0 < p∗0 < a1, the ranges of v in (3.4) and (3.5) become p∗0 ≤ v ≤ a2
1−u and p∗0 ≤ v ≤ a1

u
,

Therefore,

α = 1
1−H(p∗0)

∫ 1

0

∫ ∞
p∗0

ufU,V (u, v)dvdu

= 1
1−H(p∗0)

[∫ a1
a1+a2

0

∫ a2
1−u

p∗0

uv

a1a2
dvdu+

∫ 1

a1
a1+a2

∫ a1
u

p∗0

uv

a1a2
dvdu

]

= 1
2(1−H(p∗0))

[
−a2

a1
ln
(
a1 + a2

a2

)
+ a1

a2
ln
(
a1 + a2

a1

)
− p∗0

2

2a1a2
+ 1

]
. (3.6)

By (3.6), we can obtain the fraction of the revenue for product A2,

1− α = 1
2(1−H(p∗0))

[
a2

a1
ln
(
a1 + a2

a2

)
− a1

a2
ln
(
a1 + a2

a1

)
− p∗0

2

2a1a2
+ 1

]
. (3.7)

If a1 ≤ p∗0 ≤ a2, the ranges in (3.4) becomes p∗0 ≤ v ≤ a2
1−u and 0 ≤ u ≤ a1

a1+a2
and the

ranges in (3.5) become p∗0 ≤ v ≤ a1
u

and a1
a1+a2

≤ u ≤ a1
p∗0

. Then we have

α = 1
1−H(p∗0)

∫ 1

0

∫ ∞
p∗0

ufU,V (u, v)dvdu

= 1
1−H(p∗0)

[∫ a1
a1+a2

0

∫ a2
1−u

p∗0

uv

a1a2
dvdu+

∫ a1
p∗0
a1

a1+a2

∫ a1
u

p∗0

uv

a1a2
dvdu

]

= 1
2(1−H(p∗0))

[
−a2

a1
ln
(
a1 + a2

a2

)
+ a1

a2
ln
(
a1 + a2

a1

)
− a1

2a2

+a1

a2
ln
(
a1

p∗0

)
+ 1

]
. (3.8)
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The fraction of the revenue for product A2 is

1− α = 1
2(1−H(p∗0))

[
a2

a1
ln
(
a1 + a2

a2

)
− a1

a2
ln
(
a1 + a2

a1

)
+ a1

2a2

−a1

a2
ln
(
a1

p∗0

)
+ 1 + a1 − 2p∗0

a2

]
. (3.9)

Third, we incorporate the optimal bundling price p∗0 obtained in Lemma 3.1. If
a1 ≤ a2 <

3
2a1, p∗0 =

√
2a1a2

3 ∈ [0, a1). The revenue of A1, Rc
u1 = (1 − r)αR∗u. By (3.6),

we have

αR∗u = α(1−H(p∗0))p∗0 = p∗0
2

[
−a2

a1
ln
(
a1 + a2

a2

)
+ a1

a2
ln
(
a1 + a2

a1

)
− p∗0

2

2a1a2
+ 1

]

= 1
2

√
2a1a2

3 ·
[
−a2

a1
ln
(
a1 + a2

a2

)
+ a1

a2
ln
(
a1 + a2

a1

)
+ 2

3

]
.

Now we examine the value of Rc
u1/Rs1. Since Rc

u1/Rs1 = αR∗u/R
∗
1, we examine the value

of αR∗u/R∗1. Divide αR∗u by R∗1 and substitute a2/a1 with k where 1 ≤ k < 3
2 , by Lemma

3.1, R∗1 = a1/4, thus

αR∗u
R∗1

= 2
√

2k
3

[1
k

ln (1 + k)− k ln
(

1 + 1
k

)
+ 2

3

]
. (3.10)

Take derivative with respect to k, then d(Rcu1/R
∗
1)

dk
=
√

2
3k

[
− 1
k

ln(1 + k)− 3k ln
(
1 + 1

k

)
+ 8

3

]
<

0 if k ∈ [1, 3
2). As a result, αR∗u/R∗1 is decreasing in k. When k = 3

2 , αR∗u/R∗1 = 1.0226 >
1. Therefore, if 1 ≤ k < 3

2 , αR∗u > R∗1. Because Rc
u1/Rs1 = αR∗u/R

∗
1, Rc

u1 > Rs1 if
1 ≤ a2/a1 <

3
2 .

For product A2, by (3.7), we have

(1− α)R∗u = (1− α)(1−H(p∗0))p∗0

= p∗0
2

[
a2

a1
ln
(
a1 + a2

a2

)
− a1

a2
ln
(
a1 + a2

a1

)
− p∗0

2

2a1a2
+ 1

]

= 1
2

√
2a1a2

3

[
a2

a1
ln
(
a1 + a2

a2

)
− a1

a2
ln
(
a1 + a2

a1

)
+ 2

3

]
.

Substitute a2/a1 with k,

(1− α)R∗u
R∗2

= 2
√

2
3k

[
k ln

(
1 + 1

k

)
− 1
k

ln (1 + k) + 2
3

]
. (3.11)
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Take derivative with respect to k,

d[(1− α)R∗u/R∗2]
dk

=
√

2
3k

[
ln
(

1 + 1
k

)
+ 3
k2 ln(1 + k)− 8

3k

]
. (3.12)

If k = 1, (3.12) is greater than 0, and if k = 3
2 , (3.12) is less than 0. Taking derivative

with respect to k again, we find that d2[(1−α)R∗u/R∗2 ]
dk2 < 0 for k ∈ [1, 3/2]. Thus, there

exists only one point k̃ such that d[(1−α)R∗u/R∗2 ]
dk

|k=k̃ = 0. Since (1−α)R∗u
R∗2
|k=1 = 1.0887 > 1

and (1−α)R∗u
R∗2
|k=3/2 = 1.0961 > 1, we find that (1 − α)R∗u/R∗2 > 1 for k ∈ [1, 3

2), that is,
(1− α)R∗u > R∗2. Since Rc

u2/Rs2 = (1− α)R∗u/R∗2, Rc
u2 > Rs2 if 1 ≤ a2/a1 <

3
2 .

By Lemma 3.1, if a2 ≥ 3
2a1, p∗0 = 2a2+a1

4 ∈ [a1, a2]. For product A1, by (3.8),

αR∗u = α(1−H(p∗0))p∗0 = p∗0
2

[
−a2

a1
ln
(
a1 + a2

a2

)
+ a1

a2
ln
(
a1 + a2

a1

)
− a1

2a2
+ a1

a2
ln
(
a1

p∗0

)
+ 1

]

= 2a2 + a1

8

[
−a2

a1
ln
(
a1 + a2

a2

)
+ a1

a2
ln
(
a1 + a2

a1

)
− a1

2a2
+ a1

a2
ln
( 4a1

2a2 + a1

)
+ 1

]
.

Substitute a2/a1 with k where k ≥ 3
2 in αR∗u/R

∗
1,

αR∗u
R∗1

=
(
a2

a1
+ 1

2

) [
−a2

a1
ln
(

1 + a1

a2

)
+ a1

a2
ln
(

1 + a2

a1

)
− a1

2a2
− a1

a2
ln
(
a2

2a1
+ 1

4

)
+ 1

]

=
(
k + 1

2

) [
−k ln

(
1 + 1

k

)
+ 1
k

ln (1 + k)− 1
2k −

1
k

ln
(
k

2 + 1
4

)
+ 1

]
. (3.13)

Taking derivative with respect to k, d(R∗u/R∗1)
dk

= 1
2

[
− ln

(
1 + 1

k

)
− 1

k2 ln(1 + k) + 1
k2 ln

(
k
2 + 1

4

)]
+

1−2k
4k2 . Because ln

(
k
2 + 1

4

)
< ln(1 + k) and 1−2k

4k2 < 0 for k ∈ [3/2,∞), d(αR∗u/R∗1)
dk

< 0. Since
αR∗u/R

∗
1 > 1 if k = 3

2 and αR∗u/R
∗
1 < 1 if s = 2, and αR∗u/R

∗
1 is continuous in k, there

exists an k∗ such that if 3
2 ≤ k ≤ k∗, αR∗u/R∗1 ≥ 1, and if k > k∗, αR∗u/R∗1 < 1. Since

Rc
u1/Rs1 = αR∗u/R

∗
1, the result about the threshold k∗ holds for Rc

u1/Rs1.

For product A2, by (3.9), we have

(1− α)R∗u = (1− α)(1−H(p∗0))p∗0

= p∗0
2

[
a2

a1
ln
(
a1 + a2

a2

)
− a1

a2
ln
(
a1 + a2

a1

)
+ a1

2a2
− a1

a2
ln
(
a1

p∗0

)
+ 1 + a1 − 2p∗0

a2

]

= 2a2 + a1

8

[
a2

a1
ln
(
a1 + a2

a2

)
− a1

a2
ln
(
a1 + a2

a1

)
+ a1

2a2

−a1

a2
ln
( 4a1

2a2 + a1

)
+ a1

2a2

]
. (3.14)
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Again divide (1− α)R∗u by R∗2 and substitute a2/a1 with k,

(1− α)R∗u
R∗2

=
(

1 + 1
2k

) [
k ln

(
1 + 1

k

)
− 1
k

ln (1 + k) + 1
k

+ 1
k

ln
(
k

2 + 1
4

)]
.

Take derivative with respect to k,

d[(1− α)R∗u/R∗2]
dk

= ln
(

1 + 1
k

)
+
( 1
k2 + 1

k3

)
ln(1 + k)−

( 1
k2 + 1

k3

)
ln
(

2k + 1
4

)
−
( 1
k2 + 1

k3

)
+ 1− 2k

2k2 .

By the well-known inequalities that x
1+x ≤ ln(1 + x) ≤ x, x > −1, if k ≥ 3, we have

( 1
k2 + 1

k3

)
ln(1 + k) ≤

(1
k

+ 1
k2

)
≤
(

1 + 1
k

)
,( 1

k2 + 1
k3

)
ln
(

2k + 1
4

)
≥
(

1 + 1
k

) 4k − 6
2k + 5 ≥

(
1 + 1

k

)
.

Moreover, ln
(
1 + 1

k

)
≤ 1

k
. As a result, d[(1−α)R∗u/R∗2 ]

dk
≤ 1

k
−
(

1
k2 + 1

k3

)
+ 1−2k

2k2 < 0 for
k ∈ [3,∞). If k = 3, (1 − α)R∗u/R∗2 = 1.0743, and if k → ∞, (1 − α)R∗u/R∗2 → 1.
For k ∈ [3/2, 3], by the numerical test over [3/2, 3], we find that (1 − α)R∗u/R∗2 > 1.
Therefore, (1−α)R∗u > R∗2 if k ∈ [3/2,∞). Since Rc

u2/Rs2 = (1−α)R∗u/R∗2, Rc
u2 > Rs2 if

k ∈ [3/2,∞).

Proof of Lemma 3.4. Denote the demand of product A1 and A2 in the mixed bundling
sales by D1 and D2 respectively. The demand of the bundle is denoted by D0. Then,
D1 = (a1− p1)(p0− p1), D2 = (a2− p2)(p0− p2) and D0 = −1

2(p1 + p2− p0)2 + (p2− p0 +
a1)(p1 − p0 + a2). The total revenue is Rm = D1p1 + D2p2 + D0p0. The optimal pricing
strategies p∗1, p∗2 and p∗0 are endogenously determined. The FOCs are given by

∂Rm

∂p1
= (p1 − p0)(3p1 − 2a1) = 0,

∂Rm

∂p2
= (p2 − p0)(3p2 − 2a2) = 0,

∂Rm

∂p0
= 1

2
(
−3p1

2 − 3p2
2 + 3p2

0 + 4p1a1 − 4p0a1 + 4p2a2 − 4p0a2 + 2a1a2
)

= 0.

We focus on the points with positive value. The candidate points for achieving the
maximum revenue are as follows: 1) p0 = p1 = p2 =

√
2a1a2

3 ; 2) p1 = p0 = a1
2 + a2

3 ,
p2 = 2a2

3 ; 3) p2 = p0 = a1
3 + a2

2 , p1 = 2a1
3 ; 4) p1 = 2a1

3 , p2 = 2a2
3 , p0 = 2a1

3 + 2a2
3 −

√
2a1a2

3 ;
5) p1 = 2a1

3 , p2 = 2a2
3 , p0 = 2a1

3 + 2a2
3 +

√
2a1a2

3 . To assess those points, we construct
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the Hessian matrix H0, and evaluate the second order conditions. H0 and its principal
minors are

H0 =


6p1 − 3p0 − 2a1 0 2a1 − 3p1

0 6p2 − 3p0 − 2a2 2a2 − 3p2

2a1 − 3p1 2a2 − 3p2 −2a1 − 2a2 + 3p0

 ,
H1 = 6p1 − 3p0 − 2a1,

H2 =

6p1 − 3p0 − 2a1 0
0 6p2 − 3p0 − 2a2

 .
The determinants are

det(H0) = −3
[
18p1(p2 − p0)2 + 18p2p

2
0 − 9p3

0 − 3p2
2(3p0 + 2a1)

+3p2
1(6p2 − 3p0 − 2a2) + 4p0a1a2

]
,

det(H1) = 6p1 − 3p0 − 2a1,

det(H2) = (6p1 − 3p0 − 2a1)(6p2 − 3p0 − 2a2).

The point gives a global maximum if det(H0) ≤ 0, det(H1) ≤ 0 and det(H2) ≥ 0 at that
point. For point 1, det(H1) = 6p1 − 3p0 − 2a1 = 3

√
2a1a2

3 − 2a1 > 2√a1a2 − 2a1 ≥ 0.
For point 2, det(H1) = a2 − a1

2 ≤ 0 which contradicts the assumptions that a1 > 0,
a2 > 0 and a2 ≥ a1. Point 3 holds for det(H0) ≤ 0, det(H1) ≤ 0 and det(H2) ≥ 0 if
a2/2 ≥ a1. Point 4 holds if a2/2 < a1. For point 5, det(H0) = (6p1 − 3p0 − 2a1)(6p2 −
3p0 − 2a2)(−2a1 − 2a2 + 3p0) > 0. Thus, points 3 and 4 achieve the global maximum.

Proof of Proposition 3.5. For simplicity, we use p0 and p1 to denote p∗m0 and p∗m1.
Rewrite the expression of γcp with p0 and p1,

γcp = E
(

X

X + Y

∣∣∣∣X + Y ≥ p0, Y ≥ p0 − p1

)
. (3.15)

First, we derive the joint PDF of X + Y and X
X+Y conditional on Y ≥ p0 − p1 only.

Denote U = X
X+Y , V = X + Y . Note that the following conditions must be satisfied:

0 ≤ V U ≤ a1, p0 − p1 ≤ V (1− U) ≤ a2. Therefore, we have

fU,V (u, v) =



v

a1a2
for p0−p1

1−u ≤ v ≤ a1
u

, a1
a1+a2

≤ u ≤ a1
p0−p1+a1

, (3.16)
v

a1a2
for p0−p1

1−u ≤ v ≤ a2
1−u , 0 ≤ u ≤ a1

a1+a2
, (3.17)

0 otherwise.
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Second, we derive the expectation of X
X+Y conditional on bothX+Y ≥ p0 and Y ≥ p0−p1.

For the range in (3.16), p0−p1
1−u ≤ v ≤ a1

u
, a1
a1+a2

≤ u ≤ a1
a1+p0−p1

, the lower bound of v is
(p0−p1)(a1+a2)

a2
if u = a1

a1+a2
, and the lower bound of v is p0 − p1 + a1 if u = a1

a1+p0−p1
. By

Lemma 3.4(i), we find that (p0−p1)(a1+a2)
a2

< p0 and p0 − p1 + a1 > p0. Thus, there exists
û such that for a1

a1+a2
≤ u ≤ û, p0 ≤ v ≤ a1

u
, and for û ≤ u ≤ a1

a1+p0−p1
, p0−p1

1−u ≤ v ≤ a1
u

.
We can obtain the value of û by the relationship p0−p1

1−û = p0, i.e., û = p1/p0. Denote t1
as the integration with the first range and t2 as the second range, that is,

t1 =
∫ û

a1
a1+a2

∫ a1
u

p0

uv

a1a2
dvdu =

∫ p1
p0
a1

a1+a2

∫ a1
u

p0

uv

a1a2
dvdu

t2 =
∫ a1

a1+p0−p1

û

∫ a1
u

p0−p1
1−u

uv

a1a2
dvdu =

∫ a1
a1+p0−p1
p1
p0

∫ a1
u

p0−p1
1−u

uv

a1a2
dvdu

For the range in (3.17), p0−p1
1−u ≤ v ≤ a2

1−u and 0 ≤ u ≤ a1
a1+a2

, since the lower bound of
v is less than p0 for 0 ≤ u ≤ a1

a1+a2
, we can simply substitute the lower bound with p0.

Denote t3 as the integration with this range,

t3 =
∫ a1

a1+a2

0

∫ a2
1−u

p0

uv

a1a2
dvdu = 1

2a1a2

[
a2

2 ln
(

a2

a1 + a2

)
+ a1a2 −

p2
0

2

(
a1

a1 + a2

)2
]
.

Third, we derive the probability that P (X + Y ≥ p0, Y ≥ p0 − p1). Note that several
conditions must be satisfied. They are p0 ≤ v ≤ a1 +a2, p0−p1 ≤ y ≤ a2, 0 ≤ v−y ≤ a1.
Denote the probability as t4, we have

t4 =
∫ p0

p0−p1

∫ a1+y

p0

1
a1a2

dvdy +
∫ a2

p0

∫ a1+y

y

1
a1a2

dvdy = a1(a2 − p0 + p1)− p2
1/2

a1a2
= D∗0
a1a2

.

where D∗0 is the demand for the bundling sales under the optimal pricing strategy. As
a result, we can obtain the expectation of X

X+Y with those conditions. By (3.15), γcp =
(∑3

i=1 ti)/t4. Since R∗m0 = D∗0p0/(a1a2), γcpR∗m0 = (∑3
i=1 ti)p0, and thus

γcpR
∗
m0 = p0

2

[
−a2

a1
ln
(
a1 + a2

a2

)
+ a1

a2
ln
(
a1 + a2

a1

)
− a1

a2
ln
(
p0 − p1 + a1

a1

)
+(p0 − p1)2

a1a2
ln
(
p0 − p1 + a1

p0

)
+ 1− p2

1
2a1a2

− (a1 − p1)(p0 − p1)
a1a2

]
.

Then the total revenue of supplier 1 would be the fraction of the revenue in the bundling
sales and the revenue in the separate sales, Rc

p1 = (1− r)(γcpR∗m0 +R∗m1). We have

γcpR
∗
m0 +R∗m1 = p0

2

[
−a2

a1
ln
(
a1 + a2

a2

)
+ a1

a2
ln
(
a1 + a2

a1

)
− a1

a2
ln
(
p0 − p1 + a1

a1

)
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+(p0 − p1)2

a1a2
ln
(
p0 − p1 + a1

p0

)
+ 1− p2

1
2a1a2

−(a1 − p1)(p0 − p1)
a1a2

]
+ p1(a1 − p1)(p0 − p1)

a1a2
.

Divide γcpR∗m +R∗m1 by R∗1, and substitute a2/a1 with k,

γcpR
∗
m0 +R∗m1

R∗1
=

(
k + 2

3

) [
−k ln

(
1 + 1

k

)
+ 1
k

ln
(

6 + 6k
4 + 3k

)
+
(
k

4 + 1
9k −

1
3

)
ln
(

3k + 4
3k + 2

)

+1− 2
9k −

(1
6 −

1
9k

)]
+ 8

3

(1
6 −

1
9k

)
. (3.18)

We can obtain the revenue share E
(

Y
X+Y

∣∣∣X + Y ≥ p0, Y ≥ p0 − p1
)

by a similar manner
or simply by calculating 1 − γcp. For supplier 2, the revenue would be a fraction of the
revenue in the bundling sales, Rc

p2 = (1− r)(1− γcp)R∗m0. We have

(1− γcp)R∗m0 = p0

2

[
−a1

a2
ln
(
a1 + a2

a1

)
+ a2

a1
ln
(
a1 + a2

a2

)
+ a1

a2
ln
(
p0 − p1 + a1

a1

)
−(p0 − p1)2

a1a2
ln
(
a1 + p0 − p1

p0

)
+ 1 + p2

1
2a1a2

− (p0 − p1)
a2

− p0p1

a1a2

]
.

Divide (1− γcp)R∗m by R∗2, and substitute a2/a1 with k,

(1− γcp)R∗m0

R∗2
=

(
1 + 2

3k

) [
k ln

(
1 + 1

k

)
− 1
k

ln
(

6 + 6k
4 + 3k

)

−
(
k

4 + 1
9k −

1
3

)
ln
(

3k + 4
3k + 2

)
+ 1

6 + 1
3k

]
. (3.19)

Since Rc
p1/Rs1 = (γcpR∗m + R∗m1)/R∗1, Rc

p2/Rs2 = (1 − γcp)R∗m/R∗2, by (3.18) and (3.19),
we perform the numerical test for k = a2/a1 ∈ [2, 105]. Similarly, since Rc

p1/R
c
u1 =

((γcpR∗m0 +R∗m1)/R∗1)/(αR∗u/R∗1) and Rc
p2/R

c
u2 = (((1− γcp)R∗m0)/R∗2)/((1− α)R∗u/R∗2), by

(3.18), (3.19), (3.13) and (3.14), we perform the numerical test for k = a2/a1 ∈ [2, 105].
To exhibit clean results, Figure 3.5(a) and (b) only show the results for k ∈ [2, 100]. One
can simply obtain the same results for k ∈ [2, 105]. The results in Propositon 3.5 hold.

Proof of Proposition 3.6. For simplicity, we use p0, p1 and p2 to denote p∗m0, p∗m1 and
p∗m2 respectively in this proof. Rewrite the expression of γcf with p0, p1 and p2,

γcf = E
(

X

X + Y

∣∣∣∣X + Y ≥ p0, Y ≥ p0 − p1, X ≥ p0 − p2

)
. (3.20)
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Figure 3.5: Parital Mixed Bundling Sales
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(a) Supplier 1, k ∈ [2, 100]
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(b) Supplier 2, k ∈ [2, 100]

Denote U = X
X+Y and V = X+Y . First, we derive the joint PDF of U and V conditional

on X + Y ≥ p0, Y ≥ p0 − p1 and X ≥ p0 − p2. It is equivalent to derive the joint PDF
of U and V if p0 − p2 ≤ V U ≤ a1, p0 − p1 ≤ V (1 − U) ≤ a2 and p0 ≤ V ≤ a1 + a2.
Denote f fullU,V (u, v) as the joint PDF of events U = u, V = v, p0−p2 ≤ V U ≤ a1, p0−p1 ≤
V (1−U) ≤ a2, p0 ≤ V ≤ a1+a2. The value of the random variable U ranges from a1

a1+p0−p1

to p0−p2
p0−p2+a2

. The upper bound and lower bound of V is determined by min{a1
u
, a2

1−u , a1+a2}
and max{p0−p2

u
, p0−p1

1−u , p0} respectively for different realized values of U . Thus, we can
obtain that

f fullU,V (u, v) =



v

a1a2
for p0−p1

1−u ≤ v ≤ a1
u

, p1
p0
≤ u ≤ a1

a1+p0−p1
, (3.21)

v

a1a2
for p0 ≤ v ≤ a1

u
, a1
a1+a2

≤ u ≤ p1
p0

, (3.22)
v

a1a2
for p0 ≤ v ≤ a2

1−u , p0−p2
p0
≤ u ≤ a1

a1+a2
, (3.23)

v

a1a2
for p0−p2

u
≤ v ≤ a2

1−u , p0−p2
p0−p2+a2

≤ u ≤ p0−p2
p0

, (3.24)

0 otherwise.

With the ranges in (3.21)-(3.24), denote

t1 =
∫ a1

a1+p0−p1
p1
p0

∫ a1
u

p0−p1
1−u

uv

a1a2
dvdu, t2 =

∫ p1
p0
a1

a1+a2

∫ a1
u

p0

uv

a1a2
dvdu,
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t3 =
∫ a1

a1+a2
p0−p2
p0

∫ a2
1−u

p0

uv

a1a2
dvdu, t4 =

∫ p0−p2
p0
p0−p2

p0−p2+a2

∫ a2
1−u

p0−p2
u

uv

a1a2
dvdu.

Moreover, denote t5 = P (p0−p2 ≤ V U ≤ a1, p0−p1 ≤ V (1−U) ≤ a2, p0 ≤ V ≤ a1 +a2).
Then by (3.20), we have γcf = (∑4

i=1 ti)/t5. It is straightforward to show that t5 =
D∗0/(a1a2). Since R∗m0 = p0D

∗
0/(a1a2), the revenue share of supplier 1 in the bundling

sales is γcfR∗m0 = (∑4
i=1 ti)/t5 ·D∗0/(a1a2) · p0 = (∑4

i=1 ti)p0, i.e.,

γcfR
∗
m0 = p0

2a1a2

[
a2

2 ln
(

a2

a1 + a2

)
−a2

1 ln
(

a1

a1 + a2

)
+ a2

2 ln
(
p0 − p2 + a2

a2

)
− a2

1 ln
(
p0 − p1 + a1

a1

)
−(p0 − p2)2 ln

(
p0 − p2 + a2

p0

)
+ (p0 − p1)2 ln

(
p0 − p1 + a1

p0

)

+a2(a1 − p0 + p2) + (p0 − p2)2

2 − p2
1

2 + (p0 − p1)(p1 − a1)
]
.

Then, we can obtain (1− γcf )R∗m0 by the similar process,

(1− γcf )R∗m0 = p0

2a1a2

[
−a2

2 ln
(

a2

a1 + a2

)
+a2

1 ln
(

a1

a1 + a2

)
− a2

2 ln
(
p0 − p2 + a2

a2

)
+ a2

1 ln
(
p0 − p1 + a1

a1

)
+(p0 − p2)2 ln

(
p0 − p2 + a2

p0

)
− (p0 − p1)2 ln

(
p0 − p1 + a1

p0

)

+a1(a2 − p0 + p1) + (p0 − p1)2

2 − p2
2

2 + (p0 − p2)(p2 − a2)
]
.

The total revenue for supplier 1 is the fraction of the revenue in the bundling sales and
the separate sales, i.e., Rc

f1 = (1−r)(γcfR∗m0+R∗m1). By Lemma 3.4, R∗m1 = p1(a1−p1)(p0−p1)
a1a2

for the full mixed bundling sales, thus

γcfR
∗
m0 +R∗m1 = p0

2

[
a2

a1
ln
(

a2

a1 + a2

)
− a1

a2
ln
(

a1

a1 + a2

)
+ a2

a1
ln
(
p0 − p2 + a2

a2

)
−a1

a2
ln
(
p0 − p1 + a1

a1

)
− (p0 − p2)2

a1a2
ln
(
p0 − p2 + a2

p0

)

+(p0 − p1)2

a1a2
ln
(
p0 − p1 + a1

p0

)
+ (a1 − p0 + p2)

a1
+ (p0 − p2)2

2a1a2

− p2
1

2a1a2
+ (p0 − p1)(p1 − a1)

a1a2

]
+ p1(a1 − p1)(p0 − p1)

a1a2
.
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Now we compare the revenue of supplier 1 in the full mixed bundling and separate sales.
Divide γcfR∗m0 +R∗m1 by R∗1 = a1/4 and substitute a2/a1 with k,

γcfR
∗
m0 +R∗m1

R∗1
=

−k ln
(

1 + 1
k

)
+ 1
k

ln (1 + k) + k ln
1 + 2

3k −
1
3

√
2
k


−1
k

ln
(

1 + 2k
3 −

√
2k
3

)
−

 4
9k −

4
9

√
2
k

+ 2
9

 ln
(

2−
√

2k + 3k
2−
√

2k + 2k

)

+
(

4k
9 −

4
√

2k
9 + 2

9

)
ln
(

2k −
√

2k + 3
2k −

√
2k + 2

)
+ 2

9 −
1
9

√
2
k

+
√

2k
3

](
4
3 + 4k

3 −
2
√

2k
3

)
+ 8

3

2
9 −

1
9

√
2
k

 . (3.25)

Similarly, for supplier 2, the total revenue is Rc
f2 = (1 − r)((1 − γcf )R∗m0 + R∗m2). By

Lemma 3.4, R∗m2 = p2(a2−p2)(p0−p2)
a1a2

for the full mixed bundling sales, thus

(1− γcf )R∗m0 +R∗m2 = p0

2

[
−a2

a1
ln
(

a2

a1 + a2

)
+ a1

a2
ln
(

a1

a1 + a2

)
− a2

a1
ln
(
p0 − p2 + a2

a2

)
+a1

a2
ln
(
p0 − p1 + a1

a1

)
+ (p0 − p2)2

a1a2
ln
(
p0 − p2 + a2

p0

)

−(p0 − p1)2

a1a2
ln
(
p0 − p1 + a1

p0

)
+ (a2 − p0 + p1)

a2
+ (p0 − p1)2

2a1a2

− p2
2

2a1a2
+ (p0 − p2)(p2 − a2)

a1a2

]
+ p2(a2 − p2)(p0 − p2)

a1a2
.

Divide (1− γcf )R∗m0 +R∗m2 by R∗2 = a2/4 and substitute a2/a1 with k,

(1− γcf )R∗m0 +R∗m2

R∗2

=
k ln

(
1 + 1

k

)
− 1
k

ln (1 + k)− k ln
1 + 2

3k −
1
3

√
2
k

+ 1
k

ln
(

1 + 2k
3 −

√
2k
3

)
 4

9k −
4
9

√
2
k

+ 2
9

 ln
(

2−
√

2k + 3k
2−
√

2k + 2k

)
−
(

4k
9 −

4
√

2k
9 + 2

9

)
ln
(

2k −
√

2k + 3
2k −

√
2k + 2

)

+2
9 −
√

2k
9 + 1

3

√
2
k

4
3 + 4

3k −
2
3

√
2
k

+ 8
3

(
2
9 −
√

2k
9

)
. (3.26)

Since Rc
f1/Rs1 = (γcfR∗m0 +R∗m1)/R∗1, Rc

f2/Rs2 = (1−γcf )R∗m0/R
∗
2, by (3.25) and (3.26), we

perform the numerical test for k = a2/a1 ∈ [1, 2]. Similarly, since Rc
f1/R

c
u1 = ((γcfR∗m0 +

R∗m1)/R∗1)/(αR∗u/R∗1) and Rc
f2/R

c
u2 = (((1 − γcf )R∗m0)/R∗2)/((1 − α)R∗u/R∗2), by (3.25),
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(3.26), (3.10), (3.11), (3.13) and (3.14), we perform the numerical test for k = a2/a1 ∈
[1, 2]. The results in Proposition 3.6 hold. Proof of Proposition 3.3. First, we derive

Figure 3.6: Full Mixed Bundling Sales
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(a) Supplier 1, k ∈ [1, 2]
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(b) Supplier 2, k ∈ [1, 2]

the joint distribution of X and X + Y . Recall that V = X + Y . Then the inverse
transformation is given by Y = V − X. The joint density function of X and V is
fX,V (x, v) = fX,Y (x, y)|Ja(x, y)|−1 where Ja(x, y) denotes the Jacobian of the functions
X = X and V = X + Y . As a result, the joint distribution of X and V is

fX,V (x, v) =


1

a1a2
, for 0 ≤ x ≤ a1 and 0 ≤ v − x ≤ a2, (3.27)

0, otherwise.

The ranges can be written as 0 ≤ x ≤ a1 and x ≤ v ≤ a2 + x. If 0 < p∗0 ≤ a1,
E (X|X + Y ≥ p∗0) = 1

1−H(p∗0)

[∫ a1
p∗0

∫ a2+x
x xfX,V (x, v)dvdx+

∫ p∗0
0
∫ a2+x
p∗0

xfX,V (x, v)dvdx
]

=
1

1−H(p∗0)

(
a1
2 −

p∗0
3

6a1a2

)
. By the similar method, if 0 < p∗0 < a1, we have E (Y |X + Y ≥ p∗0) =

1
1−H(p∗0)

(
a2
2 −

p∗0
3

6a1a2

)
.

As a result, if 0 < p∗0 < a1, the pre-committed revenue sharing policy β is

β = E (X|X + Y ≥ p∗0)
E (X|X + Y ≥ p∗0) + E (Y |X + Y ≥ p∗0) = 3a2

1a2 − p∗03

3a2
1a2 + 3a1a2

2 − 2p∗03 . (3.28)

By Lemma 3.1, if a1 ≤ a2 <
3
2a1, p∗0 =

√
2a1a2

3 ∈ [0, a1). For product A1, the revenue
is Rp

u1 = (1 − r)β(1 −H(p∗0))p∗0 == 3a2
1a2−p∗0

3

3a2
1a2+3a1a2

2−2p∗0
3 · 2p∗0

3 . By substituting a2/a1 with k,
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we have

βR∗u
R∗1

=
 3− 2

3

√
2k
3

3 + 3k − 4
3

√
2k
3

 8
3

√
2k
3 ,

(1− β)R∗u
R∗2

=
 3k − 2

3

√
2k
3

3 + 3k − 4
3

√
2k
3

 8
3

√
2
3k . (3.29)

If a1 ≤ p∗0 ≤ a2, we have

E (X|X + Y ≥ p∗0)

= 1
1−H(p∗0)

∫ a1

0

∫ a2+x

p∗0

xfX,V (x, v)dvdx = 1
1−H(p∗0)

(
a1

2 −
a1p
∗
0

2a2
+ a2

1
3a2

)
,

E (Y |X + Y ≥ p∗0)

= 1
1−H(p∗0)

[∫ a2

p∗0

∫ a1+y

y
yfY,V (y, v)dvdy +

∫ p∗0

p∗0−a1

∫ a1+y

p∗0

yfY,V (y, v)dvdy
]

= 1
1−H(p∗0)

(
a2

2 −
p∗0

2

2a2
+ a1p

∗
0

2a2
− a2

1
6a2

)
.

Under the pre-committed revenue sharing policy, the fraction β is given by

β = E (X|X + Y ≥ p∗0)
E (X|X + Y ≥ p∗0) + E (Y |X + Y ≥ p∗0) = 3a1a2 − 3a1p

∗
0 + 2a2

1
3a1a2 + 3a2

2 + a2
1 − 3p∗02 . (3.30)

By Lemma 3.1, if a2 ≥ 3
2a1, p∗0 = 2a2+a1

4 ∈ [a1, a2],

βR∗u
R∗1

=
(

24k + 20
36k2 + 36k + 13

)
4k2 + 4k + 1

4k ,

(1− β)R∗u
R∗2

=
(

36k2 + 12k − 7
36k2 + 36k + 13

)
4k2 + 4k + 1

4k2 . (3.31)

Since Rp
u1/Rs1 = βR∗u/R

∗
1 and Rp

u2/Rs2 = (1 − β)R∗u/R∗2, by (3.29) and (3.31), we
perform the numerical test for a2/a1 ∈ [1, 105]. Since Rp

u1/R
c
u1 = β/α and Rp

u2/R
c
u2 =

(1− β)/(1− α), by (3.28), (3.30), (3.6), (3.7), (3.8) and (3.9), we perform the numerical
test for a2/a1 ∈ [1, 105]. To exhibit clean results, Figure 3.7a and 3.7b only show the
results for k = a2/a1 ∈ [1, 10]. One can simply show the same results for k ∈ [1, 105].

Proof of Lemma 3.7. (i) Recall that X follows the uniform distribution over range
[0, 1] with CDF F (·) and PDF f(·), and Y follows the uniform distribution over [a, b]
where a ≥ 0 and b ≤ 1 with CDF G(·) and PDF g(·). Note that we examine the case
in which a + b = 1. The optimal pricing strategy for supplier 1 is by solving the FOC
[1−F (p∗1)]/f(p∗1) = p∗1 in which F (p∗1) = p∗1 and f(p∗1) = 1. Thus, we have p∗1 = 1/2. The
optimal pricing strategy for supplier 2 is by solving the FOC [1 − G(p∗2)]/g(p∗2) = p∗2 in
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Figure 3.7: Pre-committed vs. Contingent
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(a) Supplier 1, k ∈ [1, 10]
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(b) Supplier 2, k ∈ [1, 10]

which G(p∗2) = p∗2−a
b−a and g(p∗2) = 1

b−a . Then we have p∗2 = b/2. The price should be greater
than or equal to the bottom value of the product 2, p∗2 ≥ a, thus p∗2 = max{b/2, a}.

(ii) The PDF of the random variable Z = X + Y is given by

h(z) = (f ◦ g)(z) =
∫ z

0
f(z − y)g(y)dy =



z − a
b− a

, for a ≤ z ≤ b,

1, for b < z ≤ a+ 1,
b+ 1− z
b− a

, for a+ 1 < z ≤ b+ 1.

Its CDF is given by

H(z) =



(z − a)2

2(b− a) , for a ≤ z ≤ b,

(z − a)2 − (z − b)2

2(b− a) , for b < z ≤ a+ 1,

1− (b+ 1− z)2

2(b− a) , for a+ 1 < z ≤ b+ 1.

If the price for the bundle is p0, the demand is 1 −H(p0) and the expected revenue for
the bundling sales is R = (1 − H(p0))p0. By the FOC, the optimal pricing strategy is
satisfied by p∗0 = (1 − H(p∗0))/h(p∗0). For p∗0 > b, p∗0 = (1 − H(p∗0))/h(p∗0) is equivalent
to p∗0 = 1 − (p∗0−a)2−(p∗0−b)2

2(b−a) , which yields p∗0 = 1/2 + (a + b)/4. Since a + b = 1, we have
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p∗0 = 3/4. It is simple to verify that p∗0 = 3/4 is the global maximum point if b < 3/4.
For p∗0 ≤ b, p∗0 = (1 − H(p∗0))/h(p∗0) is equivalent to p∗0 = [1 − (p∗0−a)2

2(b−a) ](p
∗
0−a
b−a ), which

yields p∗0 = 2a+
√
a2−6a+6b

3 . Now we verify that p∗0 is indeed less than or equal to b:
b ≥ 3/4, a + b = 1 ⇔ (3b − a) ≥ 2 ⇔ (3b − a)(b − a) ≥ 2(b − a) ⇔ a2 − 4ab + 3b2 +
2a − 2b ≥ 0 ⇔ 3b − 2a ≥

√
a2 − 6a+ 6b ⇔ b ≥ 2a+

√
a2−6a+6b

3 . It is simple to verify that
p∗0 = 2a+

√
a2−6a+6b

3 is indeed the global maximum point if b ≥ 3/4.
Proof of Proposition 3.8. First, we derive the joint distribution of X

X+Y and X+Y by
following the same way in the proof of Proposition 3.2. With exactly the same method in
the proof of Proposition 3.2 from the beginning to (3.3), we directly give the joint PDF
of U = X

X+Y and V = X + Y

fU,V (u, v) = (x+ y)f(x)g(y) =


v

b− a
, for 0 ≤ vu ≤ 1, a ≤ v(1− u) ≤ b,

0, otherwise.

Note that random variable U ∈ [0, 1]. If there is a condition that V ≥ p0, the conditional
PDF is

fU |V (u|V ≥ p0) = Pr(U = u, V ≥ p0)
Pr(V ≥ p0) =

∫∞
p0
fU,V (u, v)dv

1−H(p0) .

And thus, the conditional expectation is

αpn = E( X

X + Y
|X + Y ≥ p0) = 1

1−H(p0)

∫ 1

0

∫ ∞
p0

fU,V (u, v)dvdu.

Since the optimal total revenue is R∗u = (1−H(p∗0))p∗0, the revenue for supplier 1 in the
pure bundling sales is Rc

u1 = αpnR
∗
u(1 − r) = (1 − r)p∗0

∫ 1
0
∫∞
p0
fU,V (u, v)dvdu. And the

revenue for supplier 2 in the pure bundling sales is Rc
u2 = (1− αpn)R∗u(1− r).

Second, we derive the value of Rc
u1 = (1− r)p∗0

∫ 1
0
∫∞
p∗0
fU,V (u, v)dvdu in which p∗0 is the

optimal pricing strategy in Lemma 3.7. The ranges 0 ≤ vu ≤ 1 and a ≤ v(1 − u) ≤ b

are equivalent to 0 ≤ v ≤ 1
u

and a
1−u ≤ v ≤ b

1−u . Since a
1−u ≥ 0, we have a

1−u ≤ v ≤ 1
u

and a
1−u ≤ v ≤ b

1−u . Only one or other of these ranges needs to be retained, depending
on whether u is over [ 1

b+1 ,
1

a+1 ] or [0, 1
b+1 ]. Thus,

fU,V (u, v) =


v

b− a
, for a

1−u ≤ v ≤ b
1−u , 0 ≤ u ≤ 1

b+1 , (3.32)
v

b− a
, for a

1−u ≤ v ≤ 1
u
, 1
b+1 ≤ u ≤ 1

a+1 , (3.33)

0 otherwise.

The customer whose value v ≥ p∗0 will purchase the bundle. Now we discuss what the
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lower bound of v should be. By Lemma 3.7, if b > 3/4, p∗0 = 2a+
√
a2−6a+6b

3 . We find
that if b > 3/4, then a(b+1)

b
< 3/4 ≤ p∗0 = 2a+

√
a2−6a+6b

3 , so the ranges in (3.32) become
p∗0 ≤ v ≤ b

1−u , 0 ≤ u ≤ 1
b+1 . The ranges in (3.33) become p∗0 ≤ v ≤ 1

u
, 1
b+1 ≤ u ≤ 1 − a

p∗0

and a
1−u ≤ v ≤ 1

u
, 1− a

p∗0
≤ u ≤ 1

a+1 . Therefore, we have

Rc
u1 = (1− r)p∗0

∫ 1

0

∫ ∞
p∗0

uvf(uv)g(v − uv)dvdu

= (1− r)p∗0
∫ 1

b+1

0

∫ b
1−u

p∗0

uv

b− a
dvdu+

∫ 1− a
p∗0

1
b+1

∫ 1
u

p∗0

uv

b− a
dvdu+

∫ 1
a+1

1− a
p∗0

∫ 1
u

a
1−u

uv

b− a
dvdu

= (1− r)p∗0
2(b− a)

[
b2 ln

(
b

b+ 1

)
− a2 ln

(
a

a+ 1

)
− ln(a+ 1) + ln(b+ 1) + a2 ln

(
a

p∗0

)

+b− a− p∗0
2

2 −
3a2

2 + 2ap∗0
]
, (3.34)

where p∗0 = 2a+
√
a2−6a+6b

3 .

If b ≤ 3/4, then by Lemma 3.7, p∗0 = 3/4. The lower bound of v in (3.32) depends
on whether a(b+1)

b
is greater than 3/4. By a + b = 1 and a(b+1)

b
= 3/4, we can obtain an

b̂ ≤ 3/4 such that if b ≤ b̂, a(b+1)
b
≥ 3/4, and if b ≥ b̂, a(b+1)

b
≤ 3/4.

If 3/4 ≥ b ≥ b̂, p∗0 = 3/4 ≥ b, and the ranges in (3.32) become p∗0 ≤ v ≤ b
1−u and

1 − b
p∗0
≤ u ≤ 1

b+1 . The ranges in (3.33) become p∗0 ≤ v ≤ 1
u

and 1
b+1 ≤ u ≤ 1 − a

p∗0
, and

a
1−u ≤ v ≤ 1

u
and 1− a

p∗0
≤ u ≤ 1

a+1 . By subsituting p∗0 with 3/4, we can obtain

Rc
u1 = (1− r)p∗0

∫ 1

0

∫ ∞
p∗0

uvf(uv)g(v − uv)dvdu

= (1− r)p∗0
∫ 1

b+1

1− 4b
3

∫ b
1−u

3/4

uv

b− a
dvdu+

∫ 1− 4a
3

1
b+1

∫ 1
u

3/4

uv

b− a
dvdu+

∫ 1
a+1

1− 4a
3

∫ 1
u

a
1−u

uv

b− a
dvdu

= 3(1− r)
8(b− a)

[
b2 ln

(
b

b+ 1

)
− a2 ln

(
a

a+ 1

)
− ln(a+ 1) + ln(b+ 1)

+a2 ln
(4a

3

)
− b2 ln

(
4b
3

)
+ 3b2

2 −
b

2 −
3a2

2 + a

2

]
. (3.35)

If b ≤ b̂, a(b+1)
b
≤ 3/4, and then the ranges in (3.32) become p∗0 ≤ v ≤ b

1−u , 1− b
p∗0
≤ u ≤

1− a
p∗0

, and a
1−u ≤ v ≤ b

1−u , 1− b
p∗0
≤ u ≤ 1

b+1 . The ranges in (3.33) become a
1−u ≤ v ≤ 1

u
,

1
b+1 ≤ u ≤ 1

a+1 . By substituting p∗0 with 3/4, we can obtain

Rc
u1 = (1− r)p∗0

∫ 1

0

∫ ∞
p∗0

uvf(uv)g(v − uv)dvdu
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= (1− r)p∗0
∫ 1− 4a

3

1− 4b
3

∫ b
1−u

p∗0

uv

b− a
dvdu+

∫ 1
b+1

1− 4a
3

∫ b
1−u

a
1−u

uv

b− a
dvdu+

∫ 1
a+1

1
b+1

∫ 1
u

a
1−u

uv

b− a
dvdu

= 3(1− r)
8(b− a)

[
b2 ln

(
b

b+ 1

)
− a2 ln

(
a

a+ 1

)
− ln(a+ 1) + ln(b+ 1) + a2 ln

(4a
3

)

−b2 ln
(

4b
3

)
+ 3b2

2 −
b

2 −
3a2

2 + a

2

]
. (3.36)

The revenue of supplier 2 Rc
u2 can be obtained by the similar method or simply

Rc
u2 = (1− r)R∗u −Rc

u1. Now we can campare the renvenue of suppliers 1 and 2 between
the separate and pure bundling sales. By Lemma 3.7(i), for the separate sales, supplier
1’s revenue under the optimal pricing strategy is Rs1 = (1 − r)/4. Supplier 2’s revenue
is Rs2 = (1 − r)a if b/2 ≤ a (i.e., σ ≤ 1/3), and Rs2 = (1−r)b2

4(b−a) if b/2 ≥ a (i.e., σ ≥ 1/3).
Since r does not play a role in Rc

u1/Rs1 and Rc
u2/Rs2, and by the assumption a + b = 1,

those functions about a and b can be presented by a single variable a or b or σ. We show
the numerical results for Rc

u1/Rs1 and Rc
u2/Rs2 in Figure 3.8. We find that Rc

u1 ≥ Rs1.
There exists a threshold σ̄ such that if σ ≥ σ̄, Rc

u2 ≥ Rs2, and if σ < σ̄, Rc
u2 < Rs2.

Figure 3.8: Comparison
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(a) Supplier 1, σ ∈ (0, 0.5]
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(b) Supplier 2, σ ∈ (0, 0.5]

We derive the joint distribution of X and X + Y . Recall that V = X + Y . Then the
inverse transformation is given by Y = V −X. The joint density function of X and V is
fX,V (x, v) = fX,Y (x, y)|Ja(x, y)|−1 where Ja(x, y) denotes the Jacobian of the functions
X = X and V = X + Y . As a result, the joint distribution of X and V is

fX,V (x, v) =


1

b− a
, for 0 ≤ x ≤ 1 and a ≤ v − x ≤ b, (3.37)

0, otherwise.
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The ranges can be written as 0 ≤ x ≤ 1 and a + x ≤ v ≤ b + x. The conditional
expectation is E (X|X + Y ≥ p∗0) = 1

1−H(p∗0)
∫ 1
0
∫∞
p∗0
xfX,V (x, v)dvdx. Now we derive the∫ 1

0
∫∞
p∗0
xfX,V (x, v)dvdx with different values of b.

If b < 3/4, by Lemma 3.7, b < p∗0 = 3/4. Therefore,

∫ 1

0

∫ ∞
p∗0

xfX,V (x, v)dvdx =
∫ p∗0−a

p∗0−b

∫ b+x

p∗0

x

b− a
dvdx+

∫ 1

p∗0−a

∫ b+x

a+x

x

b− a
dvdx

= (p∗0 − b)3

6(b− a) −
(p∗0 − a)3

6(b− a) + 1
2 , (3.38)

where p∗0 = 3/4. Now we derive E (Y |X + Y ≥ p∗0) = 1
1−H(p∗0)

∫ 1
0
∫∞
p∗0
yfX,V (x, v)dvdy. If

b < p∗0 = 3/4, by the similar method above, we have

∫ 1

0

∫ ∞
p∗0

yfX,V (x, v)dvdy =
∫ b

a

∫ 1+y

p∗0

y

b− a
dvdy

= (1− p∗0)(b2 − a2)
2(b− a) + b3 − a3

3(b− a) . (3.39)

As a result, by (3.38) and (3.39), the fraction of the revenue for supplier 1 if b < 3/4 is

βpn = E (X|X + Y ≥ p∗0)
E (X + Y |X + Y ≥ p∗0)

= (p∗0 − b)3 − (p∗0 − a)3 + 3(b− a)
(p∗0 − b)3 − (p∗0 − a)3 + 3(b− a) + 3(1− p∗0)(b2 − a2) + 2(b3 − a3) ,

where p∗0 = 3/4.

If b ≥ 3/4, by lemma 3.7, b ≥ p∗0. Therefore,

∫ 1

0

∫ ∞
p∗0

xfX,V (x, v)dvdx =
∫ p∗0−a

0

∫ b+x

p∗0

x

b− a
dvdx+

∫ 1

p∗0−a

∫ b+x

a+x

x

b− a
dvdx

= −(p∗0 − a)3

6(b− a) + 1
2 . (3.40)

If b ≥ 3/4, by the similar method above, we have

∫ 1

0

∫ ∞
p∗0

yfX,V (x, v)dvdy =
∫ p∗0

a

∫ 1+y

p∗0

y

b− a
dvdy +

∫ b

p∗0

∫ 1+y

y

y

b− a
dvdy

= (1− p∗0)(p∗02 − a2)
2(b− a) + p∗0

3 − a3

3(b− a) + b2 − p∗02

2(b− a) . (3.41)
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As a result, by (3.40) and (3.41), the fraction of the revenue for supplier 1 if b ≥ 3/4 is

βpn = E (X|X + Y ≥ p∗0)
E (X + Y |X + Y ≥ p∗0)

= −(p∗0 − a)3 + 3(b− a)
−(p∗0 − a)3 + 3(b− a) + 3(1− p∗0)(p∗02 − a2) + 2(p∗03 − a3) + 3(b2 − p∗02) ,

where p∗0 = 2a+
√
a2−6a+6b

3 . Now we can compare the revenue for both suppliers under the
pre-committed and contingent revenue sharing policies.
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Chapter 4

Strategic Customer Behavior with A
Reservation System

4.1 Introduction

An online reservation system allows customers to join the queue and virtually wait at the
service site. Some online reservation systems, e.g., Nowait, inform customers of the queue
length when they are about to make the reservation. Such a system reduces customers’
uncertainty about the queue length, and helps them in planning their time schedule.
As a result, firms that offer the online reservation systems may attract more customers.
However, such system may lead to the strategic behavior of customers. If customers
make their decision whether to join the queue taking into account both their waiting and
travelling costs, the market coverage may not be as large as the firm expects it to be.

In this setting, we consider the following research questions: 1. What is the influence
of the online reservation system on customers’ behavior? 2. Given certain conditions,
(i.e., the benefit of the service, the travelling distance, and etc.) what is the optimal
service operation policy for the firm?

We consider a model in which customers must travel from their location to the service
site and incur a linear travelling cost. When customers intend to book service, they are
informed about the current queue length. Because customers reserve a position in the
queue before travelling, the more time they spend in travelling the less time they would
wait at the service site. Therefore, there exists a tradeoff between the travelling and
waiting costs. The travelling cost is exogeneously determined, and it depends on the
environmental factors, such as weather, road condition, and traffic. For simplicity of the
analysis, we assume that other arriving customers cannot overtake a customer during her
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traveling time to the service site and during this traveling time, the server is only idle if
the facility is empty.

Intuitively, if the travelling cost per unit distance is sufficiently low, customers who
reside far away from the service location may prefer to join the queue even if the queue
is long. Customers who reside near the service location may prefer not to join the queue
if the queue length is long since their travelling cost is negligiable and they can join the
queue whenever the queue length is short. With such customers’ behavior, the attraction
of the service is increasing in the distance between the customer and service locations.
Indeed, our analysis in Section 4.4 supports this intuition.

If the travelling cost per unit distance is sufficiently high, customers’ behavior may
differ. Customers who reside near the service site may choose to join the queue, while
the customers who reside far away from the service site may prefer not to join the queue
because the travelling cost becomes too high. Then the discussion for the high travelling
cost is similar to the traditional analysis that the attraction of the service is decreasing
in the distance between the customer and service locations. Indeed, this intuition is
supported by our analysis in Section 4.5.

The interesting and more applicable case is that the travelling cost is intermediate.
In this case, the attraction of the service is first increasing and then decreasing in the
distance. In other words, the customers who reside in an intermediate distance from the
service site are more likely to join the queue, but the customers who reside near or far
away from the service site are less likely to join the queue because the queue waiting cost
is too high for the customers who are near the service site and the travelling cost is too
high for the customers who are far away from the seravice site. The market coverage for
different queue lengths tends to be a reversed “U-shape” with respect to the travelling
distance. Our analysis in Section 4.6 is dedicated to this case and provides the exact
characterization of the customers’ choice and its dependency of the model’s parameters.

This paper builds a connection between the queueing games and Hotelling models.
By characterizing customers’ behavior, we can examine the influence of different types
of the delay information, capacity and location policies over the firm’s profit. We leave
the investigation of how firms should optimally take these decision for future research.

4.2 Literature Review

Customer behavior in queueing model has been extensively studied since Naor (1969) who
showed that if customers self-decide whether to join the queue taking into account the
queue length, then in equilibrium, they will join if and only if the queue is shorter than a
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specific threshold. He further showed that the threshold determined by maximizing the
social welfare is greater than or equal to the queue length threshold.

Recent work has extended Noar’s observable queueing model to more general settings.
There are many streams. Some papers focus on the customers with different classes.
For example, Larsen (1998) examines a model with continuously randomly distributed
service value. Adiri and Yechiali (1974) focus on the two priority classes and there are
prices for becoming one of those classes. Mendelson and Whang (1990) study an M/M/1
queueing system in which customers are classified into different groups, and those groups
are differentiated in their delay cost, expected service time and demand function. Afèche
et al. (2013) study the optimal lead time pricing strategy for serving multiple time-
sensitive customer groups. In their model, the type of customers are classified by their
arrival rate, delay cost and utility function. For other related topics, Hassin and Haviv
(2003) provide a comprehensive survey of this literature. In our model, customers are
heterogeneous in the distance from the their home to the service site. It is equivalent
to that customers are differentiated by the valuation of the service. In contrast to the
discrete classification of customers, the valuation of the service is uniformly distributed
over a line.

For the advance reservation, Simhon (2016) examines the M/D/1 queue model with
advance reservation. Oh and Su (2012) studied the optimal pricing strategy for punishing
the no-shows in advance reservation. Alexandrov and Lariviere (2012) examine the role
of reservation for a restaurant with a capacity constraint. The papers mentioned above
examine a process with two periods. The first period is for the advance reservation,
and after that the second period is for queueing. Therefore, the reservation and the
queue waiting are separated in their model. The tradeoff of the travelling cost and queue
waiting cost does not exist. In our model, the reservation and waiting form a coherent
process and customers make their decision whether to join the queue based on both
the travelling and queueing processes. Thus, our model captures a more complex and
practical behavior of customers in presence of of reservation systems.

For the delay information sharing, Guo and Zipkin (2007) examine different levels of
delay information announcements and show the sufficient condition to ensure that more
information makes the queue system better. Armony et al. (2009) compare the impact
of making different delay announcements in customer contact centers in which customers
cannot observe the queue. Allon et al. (2011a) study the strategic behavior of customers
about when to join the queue by interpreting the annoucements made by the firm. In
their setting, the annoucements could be vague and unverifiable, they investigate the
strategic behavior of customers in response to different announcements. Our work share
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the similarity that customers’ behavior is influenced by the delay information. However,
customers in our model make their decision based on the expectation of the queue length
which is not only influenced by the queue information provided by the firm but also the
distance from their home to the service site.

Hassin (2016) provides a survey about customer’s rational decision in a queueing
system and firm’s optimal strategy in response to the customer behavior. Perhaps the
most relevant paper to our work is by Hassin et al. (2016) who consider a queueing
model in which customers incur a traveling cost. They assume that the customers’ home
locations are distributed over a line, and they can only join the queue after travelling
the distance between their home and service locations. Though their work may be the
first to build up the relationship between the Hotelling model and queueing model, they
include no interaction between the traveling and waiting costs. Different from their
study, we examine the online reservation system that allows customers to make advance
reservations before traveling to the service site, thus the tradeoff between the traveling
and waiting costs exists when customers make the decision whether to join the queue.

The Hotelling model has been extensively implemented to solve problems in market-
ing and operations management areas. The earliest work are by Hotelling (1929) and
D’aspremont et al. (1979). The model characterizes the market by a line, and customers
are uniformly distributed over it. The fundamental assumption is that the attraction
of the service is decreasing in the distance between customers and the service site. By
incorporating the queue waiting cost, our result shows that the attraction of the service
is not necessarily decreasing in the distance. Intuitively, as we demonstrate in Section
4.4, if the travelling cost is sufficiently low, customers may be willing to spend much time
on travelling, thus the attraction of the service can be increasing in the distance.

4.3 Model Setup and Initial Results

Consider a market on the [0, 1] line with customers distributed on it. There is a facility
located at 0th end point of the line. Customers must travel from their location to the
facility to be served. Assume that the facility has an infinite buffer size with a fixed service
rate µ. In our model, customers call the server in the facility to make a reservation (or
book service online) and are informed about their positions in the queue at the time of
booking. More specifically, customers are told how many people are at the queue before
them. They then make a decision whether to join the queue taking into account their
travelling and queue waiting costs. If customers decide to join the queue they will be
served and will obtain a reward R when the service is completed. For simplicity, we
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ignore the price of the service. Without loss of generality if customers are risk neutral,
then the Reward can be written as Reward− Price. Thus, the utility of a customer is

Utility = Reward− Service time cost−Waiting cost− Travelling cost.

Suppose that there is a customer whose home location is at a distance of x from the
facility, x ∈ [0, 1], and x is in units of distance. If the customer agrees to join the queue
and is served, he will incur a travelling cost Cx where C is the cost per unit of time.
Without loss of generality, we assume that the cost of waiting per unit of time is 1. The
utility for the customer travelling from x and observing j customers ahead of her in the
queue upon arrival is

Ui(x) = R− 1
µ
− j

µ
− Cx.

4.3.1 Demand and Arrival Rate

The demand at any point x ∈ [0, 1] is assumed to follow a renewal process. We assume
that at each arrival epoch there is a single arrival with probability 1, and the total
demand per period over the entire line is λT with 0 < λT < ∞. We denote the number
of calls for service at x up to time t by Yt(x) and the average demand arrival rate at x by
lim
t→∞

Yt(x)/t = λTdFλT (x). Thus, the proportion of demand at any point x ∈ [0, 1] is given
by dFλT (x) such that the Lebesgue integral is well defined and

∫ 1
0 dFλT (x) = 1. Finally,

if lim
ε→0

∫ x+ε
x dFλT (x) > 0, we require that the demand at x follows a Poisson process, but

we allow demand to follow a general renewal process whenever lim
ε→0

∫ x+ε
x dFλT (x) = 0.

Observe that lim
ε→0

∫ x+ε
x dFλT (x) = 0 implies that the general renewal process at x has

an infinitesimal rate. The latter requirement is that the inter-renewal time at x with
lim
ε→0

∫ x+ε
x dFλT (x) = 0 is distributed with a cumulative distribution function (CDF) Fx(t)

such that for any ε > 0 and t > 0 we have Fx(t) ≤ ε.

With the above assumptions, the aggregated demand generation process over the
entire line follows a Poisson process with arrival rate λT . Since lim

t→∞
Yt(x)/t = λTdFλT (x),

the actual arrival rate depends on the proportion of customers over the line who decide
to join the queue. For example, if demand is symmetric over the line and half of it is
covered by the firm, then the arrival rate will be λT/2. Those assumptions have been
widely used in the literature, see, e.g., Baron et al. (2008) and Hassin et al. (2016).
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4.3.2 Waiting Cost

Let Nt(i) be the event that i ≥ 0 customers are at the queue at time t (possibly some
of them are still travelling to the queue), i ≥ 0. Thus, when the customer decides to
join the queue, the event Nt+x(j) denotes that there are j people who are still waiting
ahead of the customer when the customer arrives at the facility. If we allow no overtaking
of customers during their traveling time, we have 0 ≤ j ≤ i where i is the number of
customers in the queue when the customer is checking on line. Let Wi(x) denote the
expected waiting time in the queue upon arrival to the facility of a customer from x that
is informed that i customers are waiting before him when checking online. Given i, the
expected utility is

E[Ui(x)] = R− 1
µ
−Wi(x)− Cx.

We assume that customers make their decision whether to join the queue by consid-
ering the expected waiting cost. However, expressing Wi(x) may be very hard because
(i) overtaking, i.e., that customers at y < x may join the on-line queue later than the
customer from x, but arrive at the facility and join the physical queue before the cus-
tomer from x, and (ii) starvation, i.e., the server may have no customers in the physical
system even if they are in the on-line queue.

To address (i) and (ii), we consider as follows:

(a) The server may keep its service order as is dictated by the on-line queue, so even
if overtaking occurs physically, it does not affect the physical service order.

(b) Because the rate of arrivals over [0, x) may be small, overtaking should not be very
common.

(c) Customers have bounded rationality of customers (see Hassin (2016), p.p. 17). That
is, in reality customers may not be sophisticated to capture this complexity.

(d) If the online reservation system directly informs customers about the expected
waiting time at the service site instead of the queue length, then it is possible that
customers would arrive at the service site before the service starts, alleviating the
starvation problem.

(e) In make-to-order systems, such as the take-away service in the fast food restaurant,
once customers order online, the products or service “join” the queue right away.
In such applications, there is no starvation.
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With all of these, we assume that the facility never idles if its virtual queue> 0 (i.e.,
all customers that are travelling to the facility get to the facility on or before their service
time could start). Then, Wi(x) is given, as discussed below, by

Wi(x) = i

µ
−

i∑
j=1

i− j
µ

Pr (Nt+x(j)|Nt(i), j > 0)− i

µ
Pr(Nt+x(j)|Nt(i), j = 0). (4.1)

Note that Wi(0) = i
µ

for all i ≥ 0. The customer will agree to join the queue if
E[Ui(x)] ≥ 0, or make no reservation if E[Ui(x)] < 0. If the number of customers at the
facility is greater than 0, j > 0, then the departure process from the queue is Poisson
with intensity µ during the travelling time x, therefore we have

Pr {Nt+x(j)|Nt(i), j > 0} = (µx)(i−j)

(i− j)! e
−µx.

The expected reduction of queue size during the travelling time is then

i∑
j=1

i− j
µ

Pr {Nt+x(j)|Nt(i), j > 0}+ i

µ
Pr{Nt+x(j)|Nt(i), j = 0}

=
i−1∑
k=0

k

µ

(µx)k
k! e−µx +

∞∑
k=i

i

µ

(µx)k
k! e−µx ≥ 0.

where k is the number of departures of a Poisson process. Note that W0(x) = 0 for all
x ∈ [0, 1].

The analyze Wi(x) as given in (4.1), the following notation is required:

pi(µ) = (µ)i
i! e−µ (Probability of i events of Poisson distribution with intensity µ),

Pi(µ) =
i∑

n=0

(µ)n
n! e

−µ (Probability of up to i events of Poisson distribution with intensity µ),

Qi(µ) =
∞∑

n=i+1

(µ)n
n! e

−µ = 1− Pi(µ).

The Poisson distribution can be expressed by the incomplete gamma fuction,

Pi(µ) = Γ(i+ 1, µ)
Γ(i+ 1) , Qi(µ) = γ(i+ 1, µ)

Γ(i+ 1) ,

in which Γ(i, µ) =
∫∞
µ ti−1e−tdt, γ(i, µ) =

∫ µ
0 t

i−1e−tdt, and Γ(i) = Γ(i, 0).
Some relevant properties of Wi(x) are given by Lemma 4.1.
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Lemma 4.1 For x ∈ [0, 1], the expected queue waiting time is

Wi(x) =


1
µ

i−1∑
n=0

Pn(µx) = 1
µ

[
−µxΓ(i− 1, µx)

Γ(i− 1) + iΓ(i, µx)
Γ(i)

]
, if x > 0,

i

µ
if x = 0.

which is strictly increasing in i and decreasing in x.

As the number in queue for an M/M/1 is independent of future arrivals and by Lemma
4.1, for any x ∈ [0, 1] there exists a threshold ix such that if i ≤ ix, E[U(x)|i] ≥ 0 and
if i > ix, E[U(x)|i] < 0. In other words, in equilibrium the fraction of customers from x

who join the queue is px = ∑ix
i=0 pi where pi is the steady state probability of the number

of customers in the queue. The fraction of customers who will make no reservation would
be p−x = ∑∞

i=ix pi. By definition of ix, the following inequalities hold

Wix+1(x) + Cx ≥ R− 1
µ
≥ Wix(x) + Cx.

Now, we can characterize the behavior of ix with the variation of x for different
travelling costs. To avoid the trivial case, we assume that R − 1

µ
> 0. Otherwise, the

service has no attraction to any customer over the line for any queue length.

4.4 No Travelling Cost (C = 0)

If there is no travelling cost, only the queue waiting cost matters. Lemma 4.1 guarantees
that given i, for any x̂ > x, if customers at x joins the queue, so will customers from x̂.
Given R, there exists i0 such that for the customers who reside in the 0th end point will
join the queue if i ≤ i0 and make no reservation if i > i0, thus

i0 = arg max
i

{
R− 1

µ
− i

µ
≥ 0

}
= bRµ− 1c, (4.2)

where bxc denotes that the largest integer that is smaller than or equal to x.

Consider the customers who reside at the 1st end point, x = 1. By Lemma 4.1,
Wi(1) = 1

µ

∑i−1
n=0 Pn(µ) is increasing in i and lim

i→+∞
Wi(1) = +∞. Thus, there always

exists i1 such that for the customers who reside at x = 1 will join the queue if i ≤ i1 and
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make no reservation if i > i1, thus

i1 = arg max
i

{
R− 1

µ
−Wi(1) ≥ 0

}
. (4.3)

Because Wi(1) = 1
µ

∑i−1
n=0 Pn(µ) ≤ i

µ
= Wi(0), we have i0 ≤ i1.

To summarize, i0 and i1 defines the highest queue length that customers residing in
0th and 1st end points agree to join the queue, respectively. Thus, the maximum queue
length for customers who reside in (0, 1) to join the queue must be in [i0, i1]. If the
queueing system is in state i ∈ (i0, i1], a proportion of the customers in the market will
join the queue. Thus, the arrival rate is not λT , but a fraction of it. Since the arrival rates
are state-dependent, we denote the arrival rate for state i by λi. Figure 4.1 illustrates the
arrival rates and the service rate for different states of the queueing model when there
are no traveling cost.

Figure 4.1: Arrival rates when there is no travelling cost

0 1 · · · i0 · · · i1
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µ

λT

µ

λi0

µ
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4.4.1 Case 1: i0 = i1

If i0 = i1, all customers in [0, 1] will not join the queue if i > i0, but will join the queue
if i ≤ i0. Thus, i0 = i1 is the case that the arrival rate λi = λT if i ≤ i0, and λi = 0 if
i > i0. Now, we can characterize the sufficient and necessary conditions for i0 = i1. By
(4.2) and (4.3), i0 = i1 implies

i0+1
µ

> R− 1
µ
≥ i0

µ
, (4.4)

Wi0+1(1) > R− 1
µ
≥ Wi0(1). (4.5)

From (4.4) and (4.5), we obtain

Wi0+1(1) > R− 1
µ
≥ i0
µ
. (4.6)
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Inequalities (4.6) imply Wi0+1(1) > i0
µ

, equivalently, ∑i0
n=0 Pn(µ) > i0. Therefore, the

sufficient and necessary conditions for i0 = i1 are

i0∑
n=0

Pn(µ) > i0 (a), Wi0+1(1) > R− 1
µ
≥ i0
µ

(b). (4.7)

We find that condition (a) depends on µ. And, condition (b) depends on both µ and R.
The following lemma gives the values of µ that satisfy condition (a).

Lemma 4.2 (i) If µ ∈ (0, 1), we have ∑i
n=0 Pn(µ) > i for any i ≥ 0 .

(ii) If µ ∈ [1,+∞), there exists a unique î ≥ 0 such that ∑i
n=0 Pn(µ) > i for all i ≤ î,

and ∑i
n=0 Pn(µ) ≤ i for all i > î. Specifically, î = 0 iff µ ∈ [µ∗,+∞) where

µ∗ = −2−W (−1/e2) and W (·) is the Lambert W function in the lower branch1

The term µ = 1 plays a special role in Lemma 4.2. In our discussion, we derive the
conditions for i0 = i1 by comparing the waiting cost of customers at the 0th and 1st end
points. Since we normalize the time to travel the entire length of the market to 1, µ = 1
is an important threshold. If this time is not 1, the results would be different. Now, it is
straightforward to classify R into three categories for different behaviors of customers in
response to µ’s value.

By Lemma 4.2(i), if µ ∈ (0, 1), ∑i
n=0 Pn(µ) > i for all i ≥ 0. Since ∑i

n=0 Pn(µ) =
µWi0+1(1), Wi0+1(1) > i

µ
. Moreover, Wi0+1(1) ≥ Wi0(1) because the expected waiting

cost is increasing in i0. Thus, we can order the waiting cost of customers who reside in
the 0th end point with different i values as follows:

0 < W1(1) ≤ 1
µ
< W2(1) ≤ 2

µ
< W3(1) ≤ · · · < Wi(1) ≤ i

µ
< Wi+1(1) ≤ i+ 1

µ
< · · ·

Since i0 = i1, the inequalities hold for the waiting cost of customers who reside in the
1st end point. As a result, for all i, if R ∈ [ i+1

µ
,Wi+1(1) + 1

µ
), then conditions (a) and (b)

hold, thus i0 = i1 = i. If R ∈ [Wi+1(1) + 1
µ
, i+2
µ

), i0 < i1. Obviously, we have i0 = i − 1
and i1 = i.

Corollary 4.3 If µ ∈ (0, 1), i0 + 1 ≥ i1 ≥ i0.

1The Lambert W function W (x) is double-valued if x ∈ (−1/e, 0), thus it has two branches, i.e.,
the principle and lower branches. In the lower branch of the Lambert W function, the value of it
monotonically decreases from W (−1/e) = −1 to W (0−) = −∞. We restrict our attention on the lower
branch so that µ is non-negative.
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If µ ∈ [1,+∞), there exists î ≥ 0 such that for all i ≤ î, ∑i
n=0, Pn(µ) > i. Thus,

for any i ≤ î, we have similar results to these in µ ∈ (0, 1). As a result, for i ≤ î,
if R ∈ [ i+1

µ
,Wi+1(1) + 1

µ
), (4.7)(a) and (4.7)(b) are satisfied, thus i0 = i1 = i. If

R ∈ [Wi+1(1) + 1
µ
, i+2
µ

), i0 = i − 1 < i = i1. If R ∈ [Wî+1(1) + 1
µ
,∞), i0 < i1. If

µ ∈ [µ∗,∞), by Lemma 4.2(ii), î = 0. Table 4.1 summarizes the three categories of R
resulting in i0 = i1 or i0 < i1 in response to different values of µ. Table 4.2 summarize
the the arrival rates for different system states if i0 = i1. The term “QL” is short for
queue length.

Table 4.1: Three categories of µ and R’s value

µ ∈ (0, 1) µ ∈ [1, µ∗) µ ∈ [µ∗,∞)

i0 = i1
R ∈ [ i+1

µ
,Wi+1(1) + 1

µ
)

for all i ≥ 0
R ∈ [ i+1

µ
,Wi+1(1) + 1

µ
)

for i ≤ î (̂i > 0)
R ∈ ( 1

µ
, e
−µ

µ
+ 1

µ
)

i0 < i1
R ∈ [Wi+1(1) + 1

µ
, i+2
µ

)
for all i ≥ 0

R ∈ [Wi+1(1) + 1
µ
, i+2
µ

)
for i ≤ î (̂i > 0), or
R ∈ [Wî+1(1) + 1

µ
,∞)

R ∈ [ e−µ
µ

+ 1
µ
,∞)

Table 4.2: Arrival rates (i0 = i1)

µ ∈ (0, 1) and
R ∈ [ i+1

µ
,Wi+1(1) + 1

µ
)

µ ∈ [1, µ∗) and
R ∈ [ i+1

µ
,Wi+1(1) + 1

µ
)

for i ≤ î (̂i > 0)

µ ∈ [µ∗,∞) and
R ∈ ( 1

µ
, e
−µ

µ
+ 1

µ
)

λT , if QL≤ i;
0, if QL> i

λT , if QL≤ i;
0, if i <QL≤ î

λT , if QL= 0;
0, if QL> 0

In conclusion, for i0 = i1, we have sufficient conditions that µ and R are in those
three categories, and necessary conditions that µ and R are in at least one of those three
categories.

4.4.2 Case 2: i0 < i1

Let xi = {x ≥ 0 : E(Ui(x)) = 0}. Proposition 4.4 characterizes the “steps” property of
the demand rates when i0 < i1.

Proposition 4.4 If i0 < i1, for any integer i ∈ (i0, i1], there exists xi ∈ [0, 1] such that
E(Ui(xi)) = 0. Moreover, for any integers a, b ∈ [i0, i1], if a > b, then xa > xb.
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Proposition 4.4 shows that if the queue length is large, the customers who reside
far away from the service site is more likely to join the queue if the travelling cost
is negligiable. Because in the online reservation system, customers make the advance
reservation and virtually wait in the line, the longer the distance they are travelling the
less time they have to wait in the service site. Meanwhile, the travelling cost is zero, thus
the waiting cost tends to be small if customers spend much time in travelling. Therefore,
the expected utility of the customer who resides far away tends to be high. For the
customers who reside near the service site, they can join the queue whenever the queue
length is sufficiently short, thus they may not make the reservation if the queue length is
high. However, it is possible that some customers make the reservation and then wait at
home until the queue length becomes zero. It is then equivalent to that they do not have
any cost for waiting at home, and thus the “travelling cost” for them is zero. Generally,
by Proposition 4.4, the attraction of the service may be increasing in the distance between
the customer and service locations.

Table 4.3 summarize the arrival rates for different system states if i0 < i1. In the 3rd

and 4th rows of Table 4.3, we show the arrival rates for R ∈ [ i0+1
µ
,Wi1(1)+ 1

µ
). However, if

denoting i0+k = i1, k ∈ N+, we did not specify the values of R for each k. The discussion
of R for different k values boils down to the derivation of b∑k

i=0 Pi(µ)c. One can expect
that b∑k

i=0 Pi(µ)c highly relies on µ. The discussion of b∑k
i=0 Pi(µ)c is well-defined and

complicated, but we can show i0 and i1 and the arrival rates numerically.

Example 4.1 (a) Assume that customers are uniformly distributed over [0, 1], then for
customers who reside in [x, 1] the arrival rate will be

∫ 1
x λTdFλT (x) = (1−x)λT . Consider

i0 < i1, by Proposition 4.4, for any integer i ∈ (i0, i1] there exists xi ∈ [0, 1] solving
R − 1

µ
= Wi(x). And, the arrival rate from state i to i + 1 is λi =

∫ 1
xi
λTdFλT (x) =

(1− xi)λT .
Consider µ ∈ [µ∗,+∞). When R ∈ ( 1

µ
, e
−µ

µ
+ 1

µ
), for customers at x = 0, the expected

utilities for i = 0, 1 are

(i = 0) R− 1
µ

> 0

(i = 1) R− 2
µ

<
e−µ

µ
− 1
µ
< 0,

Thus, i0 = bRµ− 1c = 0. For customers at x = 1, the expected utilities for i = 0, 1 are

(i = 0) R− 1
µ
−W0(1) = R− 1

µ
> 0
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Table 4.3: Arrival rates (i0 < i1)

µ ∈ (0, 1) and
R ∈ [Wi+1(1) + 1

µ
, i+2
µ

)

µ ∈ [1, µ∗) and
R ∈ [Wi+1(1) + 1

µ
, i+2
µ

)
for i ≤ î (̂i > 0)

λT , if QL≤ i;
λi+1 = (1− xi+1)λT , if QL= i+ 1;

0, if QL> i+ 1

λT , if QL≤ i;
λi+1 = (1− xi+1)λT , if QL= i+ 1;

0, if QL> i+ 1
µ ∈ [1, µ∗) and

R ∈ [ i0+1
µ
,Wi1(1) + 1

µ
)

(̂i < i0 < i1)

µ ∈ [µ∗,∞) and
R ∈ [ i0+1

µ
,Wi1(1) + 1

µ
)

(0 < i0 < i1)

λT , if QL≤ i0;
λi0+1 = (1− xi0)λT , if QL= i0 + 1;

...
λi1 = (1− xi1−1)λT , if QL= i1;

0, if QL> i1

λT , if QL≤ i0;
λi0+1 = (1− xi0)λT , if QL= i0 + 1;

...
λi1 = (1− xi1−1)λT , if QL= i1;

0, if QL> i1

(i = 1) R− 1
µ
−W1(1) = R− 1

µ
− e−µ

µ
< 0,

thus i1 = 0. When the system is in state i = 0, all the customers on the line [0, 1] will
join the queue; and when the system is in state i = 1, all the customers on the line will
not join the queue. The system is illustrated by Figure 4.2.

Figure 4.2: Example 1(a): µ ∈ [µ∗,+∞) and R ∈ ( 1
µ
, e
−µ

µ
+ 1

µ
)

0 1

λT

µ

By the classic result of the state-dependent queue, the queue can be modeled as a
standard B&D process and thus the steady state probability has the relation λTp0 = µp1.
By p0 + p1 = 1, we obtain p0 = 1

1+λT /µ and p1 = λT /µ
1+λT /µ . The average arrival rate

is λT
1+λT /µ , the average queue length is λT /µ

1+λT /µ , and the average utility for customers is
R−1/µ
1+λT /µ .
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(b) If R ∈ [ e−µ+1
µ

, (µ+2)e−µ+1
µ

), for x = 0, the expected utility for i = 0, 1 are

(i = 0) R− 1
µ

> 0

(i = 1) R− 2
µ

<
(µ+ 2)e−µ − 1

µ
≤ 0.

The second inequality holds for i = 1 because µ ∈ [µ∗,+∞), 2 + µ − eµ ≤ 0, so i0 = 0.
For customers at x = 1, the expected utilities for i = 0, 1, 2 are

(i = 0) R− 1
µ
−W0(1) = R− 1

µ
> 0

(i = 1) R− 1
µ
−W1(1) = R− 1

µ
− e−µ

µ
≥ 0

(i = 2) R− 1
µ
−W2(1) = R− 1

µ
− e−µ

µ
− e−µ + µe−µ

µ
< 0

Thus, we have i1 = 1. When the system is in state i = 1, customers at 0th end point
will not join the queue but customers at 1th end point will join the queue. There exists
x ∈ (0, 1) such that E(U1(x)) = 0. That is

R− 1
µ
−W1(x) = R− 1

µ
− e−µx

µ
= 0.

x = − ln(Rµ−1)
µ

. Therefore, λ1 =
(
1 + ln(Rµ−1)

µ

)
λT . The system is illustrated by Figure

4.3.

Figure 4.3: Example 1(b): µ ∈ [µ∗,+∞) and R ∈ [ e−µ+1
µ

, (µ+2)e−µ+1
µ

)

0 1 2

λT

µ

λ1

µ

By the relation that λTp0 = µp1, λ1p1 = µp2 and p0 + p1 + p2 = 1, we can ob-
tain the steady state probability as p0 = 1

λ1λT /µ2+λT /µ+1 , p1 = λT /µ
λ1λT /µ2+λT /µ+1 and p2 =

λ1λT /µ
2

λ1λT /µ2+λT /µ+1 in which λ1 =
(
1 + ln(Rµ−1)

µ

)
λT . The average arrival rate is λT+λ1λT /µ

λ1λT /µ2+λT /µ+1 ,
the average queue length is λT /µ+2λ1λT /µ

2

λ1λT /µ2+λT /µ+1 and the average utility of customers is
R−1/µ+(R−1/µ−e−µ/µ)λT /µ

λ1λT /µ2+λT /µ+1 .
(c) For R ∈ [ (µ+2)e−µ+1

µ
,∞), we do the numerical experiments for µ = 2. If µ = 2,

we obtain the queue waiting costs in Table 4.4 as follow:
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Table 4.4: Queue waiting cost

i = 0 1 2 3 4 5

Wi(0) 0 0.5 1 1.5 2 2.5

Wi(1) 0 0.0677 0.2707 0.6090 1.0376 1.5112

If R ∈ [0.5, 0.5677), then R − 1
µ
∈ [0, 0.0677), and the queue model is illustrated by

Figure 4.2. If R ∈ [0.5677, 0.7707), then R− 1
µ
∈ [0.0677, 0.2707], and the queue model is

illustrated by Figure 4.3. If R− 1
µ
∈ [0.2707, 0.6090), then the queue model is illustrated

by Figure 4.4. Since xi defines the location of customers who have the 0 expected utility
if the queue length is i, xi solves the equation R − 1

µ
−Wi(x) = 0, and then we obtain

λi = (1− xi)λT . If R = 0.8, then we have λ1 = 0.7446λT , and λ2 = 0.0690λT .

Figure 4.4: Example 1(c): µ = 2 and R− 1
µ
∈ [0.2707, 0.5)

0 1 2 3

λT

µ

λ1

µ

λ2

µ

If R− 1
µ
∈ [0.5, 0.6090), then the queue model is illustrated by Figure 4.5. By a similar

manner, if R = 1.1, then λ2 = 0.5635λT .

Figure 4.5: Example 1(c): µ = 2 and R− 1
µ
∈ [0.5, 0.6090)

0 1 2 3

λT

µ

λT

µ

λ2

µ

If R − 1
µ
∈ [0.6090, 1), then then the queue model is illustrated by Figure 4.6. If

R = 1.3, then λ2 = 0.7953λT , and λ3 = 0.2563λT .

Figure 4.6: Example 1(c): µ = 2 and R− 1
µ
∈ [0.6090, 1)

0 1 2 3 4

λT

µ

λT

µ

λ2

µ

λ3

µ
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If R − 1
µ
∈ [1, 1.0376), then then the queue model is illustrated by Figure 4.7. If

R = 1.51, then λ3 = 0.4982λT .

Figure 4.7: Example 1(c): µ = 2 and R− 1
µ
∈ [1, 1.0376)

0 1 2 3 4

λT

µ

λT

µ

λT

µ

λ3

µ

For other other values of µ and R, one can calculate the arrival rates for all the states
by a similar method.

4.5 Sufficiently Large Travelling Cost (C ≥ 1)

In the previous section, if C = 0, for any i, the expected total cost of a customer who
resides in the 1st end point tends to be less than that of a customer who resides in the
0th end point. In this section, we examine the case that the travelling cost is sufficiently
large. Thus, customers will consider also the travelling cost when deciding whether to
join the queue. Denote that the expected total cost of customers who reside in x by
ηi(x),

ηi(x) = 1
µ

+Wi(x) + Cx

Now, we show a lower bound of C so that for any i, the expected total cost is increasing
in x. It guarantees that for any x̂ < x, if customers at x join the queue, then customers
at x̂ will join. Thus, the expected total cost for customers who reside in the 1st end point
is greater than that for customers who reside in the 0th end point.

Lemma 4.5 If C ≥ 1, ηi(x) is increasing in x for any i.

Lemma 4.5 shows the lower bound of C for the total cost to be increasing in distance
for all i. The intuition is that the reduction of the expected queue waiting cost per unit
distance is less than 1. If C ≥ 1, then the increment of the travelling cost per unit
distance is greater than or equal to 1. Thus, the total cost is increasing in the distance
if C ≥ 1.
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There exists ic1 such that customers who reside in 1st end point will join the queue if
i ≤ ic1, and make no reservation if i > ic1, thus

ic1 = arg max
i

{
R− 1

µ
−Wi(1)− C ≥ 0

}
. (4.8)

If C ≥ 1, Wi(1) + C ≥ i
µ

= Wi(0) for any i, thus we have i0 ≥ ic1. For an extreme case
that C > R − 1

µ
, because W0(x) = 0, customers who reside in the 1st end point will not

join the queue, namely, ic1 < 0. It implies that if C > R− 1
µ

even if there are no customers
in system, the travelling cost for customers at 1st end point is too high. Since i0 ≥ ic1, i0
defines the maximum queue size in the system. In contrast to the analysis in the case of
C = 0, we find that if C ≥ 1, i0 6= ic1 for any R and µ.

Lemma 4.6 If C ≥ 1, i0 6= ic1 for any R and µ.

By Lemma 4.6, i0 6= ic1, thus the only relation for i0 and ic1 is i0 > ic1. Next, we show
the “steps” property for C ≥ 1 and i0 > ic1

Proposition 4.7 If i0 > ic1, for any i ∈ (ic1, i0], there exists xi ∈ [0, 1] such that
E(Ui(xi)) = 0. Moreover, for any integers a, b ∈ [i0, ii], if a > b, then xa < xb.

Proposition 4.7 shows an opposite result compared to the one in Proposition 4.4. If the
travelling cost is sufficiently large, the customers who reside near the service site are more
likely to make a reservation. As a result, the attraction of the service is decreasing in the
distance between the customer and service locations. Such result is consistent with the
traditional result in the literature that the market coverage is decreasing in the distance.
Figure 4.8 shows the basic idea of the “steps” property for different travelling costs.
Figure 4.8(a) illustrates the behavior of customers if the travelling cost is negligiable,
and Figure 4.8(b) illustrates the behavior of customers if the travelling cost is sufficiently
large.

4.5.1 Arrival Rates

By (4.8), ic1 defines the maximum queue length for customers who reside in 1st end point
to join the queue. If i ≤ ic1, then all the customers will join the queue, and the arrival rate
will be λT . By (4.2) and i0 > ic1, if i > i0, all the customers will make no reservation, and
the arrival rate will be 0. For the queue length i0 ≥ i > ic1, a fraction of the customers
over the line will join the queue. Recall that xi = E(Ui(xi)) = 0 which defines the location
of customers who have the 0 expected utility. Thus, the arrival rate for i0 ≥ i > ic1 will
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Figure 4.8: The “Steps” Property
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be λi = xiλT , namely, when the travelling cost is sufficiently large, customers who reside
near the service location will join the queue.

Example 4.2 Let µ = 2, C = 2, and R = 3, the utilities of customers with different
locations are showed in 4.9. Thus, the queueing model can be illustrated by Figure 4.10.

Figure 4.9: Example 2: µ = 2, C = 2, R = 3
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Figure 4.10: Example 2: µ = 2, C = 2, R = 3
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For the arrival rates, x3 solves the equation R − 1
µ
−W3(x) − Cx = 0 and x4 solves

the equation R− 1
µ
−W4(x)− Cx = 0. Thus, we can obtain the arrival rates λ3 = x3λT

and λ4 = x4λT . In this example, x3 = 0.9162 and x4 = 0.4979, therefore, λ3 = 0.9162λT
and λ4 = 0.4979λT .

4.6 Intermediate Travelling Cost (C ∈ (0, 1))

The analysis tends to be more complicated for the intermediate travelling cost. Intu-
itively, if C ∈ (0, 1), the total cost may have an “U-shape” in response to the distance
between the customer and service locations. However, in contrast to the result in the
previous sections that the total cost is either decreasing or increasing for every queue
length i, the total costs for this case do not have the the same shape. Lemma 4.8 shows
that there exists a threshold ī such that the total cost has the “U-shape” only if i ≤ ī.

Lemma 4.8 If C ∈ (0, 1), there exists ī ≥ 0 such that if i > ī the total cost ηi(x) is
increasing in x ∈ [0, 1]. If i ≤ ī, there exists x̄(i) such that if x ≤ x̄(i), ηi(x) is decreasing
in x, and if x > x̄(i), ηi(x) is increasing in x.

In Lemma 4.8, the threshold x̄(i) denotes the location with the lowest total cost. However,
x̄(i) can be different for different i values. Therefore, the functions of the total cost
with respect to the distance are different for different i values. By Lemma 4.8, it is
straightforward to obtain the following result.

Proposition 4.9 If C ∈ (0, 1), there exists there exists ī ≥ 0 such that if i > ī the utility
of customers Ui(x) is decreasing in x ∈ [0, 1]. If i ≤ ī, there exists x̄(i) such that if
x ≤ x̄(i), Ui(x) is increasing in x, and if x > x̄(i), Ui(x) is increasing in x.

Proposition 4.9 shows that the utilities of customers can be a reversed “U-shape” for
different distances. Similarly, the shape of Ui(x) are different for different i values. If
C ∈ (0, 1), the customers who reside in an intermediate distance from the service site
may join the queue because the travelling cost is too high for the customers who reside
far away from the service site, and the queue waiting cost is too high for the customers
who reside near the service site. Figure 4.11 illustrates the results in Lemma 4.8 and
Proposition 4.9.

Example 4.3 Let C = 0.5, µ = 6 and R = 0.45. Figure 4.11(a) illustrates the curves of
the total cost for different i values, and Figure 4.11(b) illustrates the curves of the utility
for different is. The dash line in Figure 4.11(b) is the lower boundary for that customers
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will join the queue. In this example, if i = 0, customers who reside near the service
site will join the queue, and if i = 1, customers who reside in an intermediate distance
will join the queue. For i ≥ 2, no customer makes reservation. The queue model can be

Figure 4.11: Example 3
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(b) Utility C = 0.5, µ = 6, R = 0.45

illustrated by Figure 4.12.

Figure 4.12: Example 3: C = 0.5, µ = 6 and R = 0.45
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If i = 0, a fraction of customers over the line will join the queue. Similar to the
methods in previous examples, x0 solves the equation R− 1

µ
−W0(x)− Cx = 0 in which

W0(x) = 0 because if there is no customers in the queue then there will be no queue
waiting cost for the next customer. Thus, x0 = 0.5667 and λ0 = 0.5667. If i = 1, there
are two solutions to the equation R − 1

µ
−W1(x) − Cx = 0. They are x11 = 0.1123 and

x12 = 0.4716, and the arrival rate is λ1 = (x12 − x11)λT = 0.3593λT .
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4.7 Discussion: Walk-in and Online Reservation Sys-
tems

In this section, we consider the mixture of the walk-in and online reservation systems. We
denote the fraction of customers who are going to make reservation online by α. Thus,
the fraction of customers who do not make reservation online but walk in the service
site is 1 − α. For simplicity, we call those customers “walk-in customers”. Assume that
the arrival process of walk-in customers follows a Poisson distribution. Then, if the total
arrival rate is λT , then the arrival rate for the walk-in customers is (1 − α)λT , and the
aggregated arrival process is also Poisson.

The simplest way to incorporate the walk-in customers in our model is by considering
that all of them live in the 0th end point. Then, that the expected utility of those
customers is

E[Ui(0)] = R− 1
µ
−Wi(0).

By the definition of i0, the customers who reside in the 0th end point will join the queue
if the queue length i ≤ i0 and make no reservation if i > i0. In this case, the 0th end
point becomes a “mass point” where a positive fraction of customers reside. Since only
the distribution of the market changes, the main results in sections 4.4-4.6 carry over.

The intuition for the difference between the mixture and pure reservation system is
as follows. When the travelling cost is sufficiently large, i.e., C ≥ 1, the arrival rate of
the mixed system will be relatively higher than that of the pure reservation system for
any queue length i, because there are more customers close to the facility. When the
travelling cost is negligiable, i.e., C = 0. The arrival rate of the mixed system will be
higher than that of the pure reservation system if the queue length is short, and will be
lower if the queue length is long. For the intermediate travelling cost, the result is similar
to the negligiable travelling cost case.

4.8 Conclusion

In this paper, we characterize the behavior of customers with an online reservation sys-
tem. The online reservation system informs customers the real-time queue length allowing
them to join the queue without physically being at the service site. Thus, customers can
make advance reservations and travel to the service site. During their travel, the queue
length tends to get shorter. Meanwhile, customers take into account both the traveling
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and expected waiting costs when making their decision whether to join the queue. In-
tuitively, the longer the distance they must travel the less time they may wait in the
line. By considering different levels of the traveling cost, we find that if the travelling
cost is negligible, then the attraction of the service is increasing in the distance, and if
the travelling cost is sufficiently large, then the attraction of the service is decreasing in
the distance. For the intermediate travelling cost, the attraction of the service can be a
reversed “U-shape” in response to the distance.

There are several limitations in our work. First, we assume that customers arrive at
the service site when they are called to be served. Though the model with such assump-
tion has its application, e.g., the take-away service in fast food restaurants or Starbucks,
it does not characterize the online reservation system in many other facilities. Thus, the
complete analysis for the online reservation system is a future research direction. Sec-
ond, one can consider the non-linear travelling and waiting costs. One can expect that
if the travelling cost is concave, then the attraction of the service may be increasing in
the distance, and if the travelling cost is convex, the attraction of the service may be
decreasing in the distance.

Further work could be dedicated to find the optimal location, capacity, information
sharing policies of a firm with an online reservation system. First, since the customers
with different distances from the service site may have different behavior, the firm can
optimally select the service location to maximize its revenue. Second, some firms may
not prefer to reveal the queue length. Based on our current result, we expect that the
optimal strategy may be revealing the queue length if the queue length is small, but not
revealing the queue length if the queue length is large. However, for different travelling
costs, the threshold queue length for information revelation may be different. Third,
the complete analysis of the mixture of the walk-in and reservation system will be made.
Fourth, the main controlling parameters in our model is the service rate µ and the reward
of the service R. Thus, to earn the optimal revenue, the firm can dynamically select those
two parameters by increasing or decreasing the staff number or using dynamic pricing.

4.9 Proofs.

Proof of Lemma 4.1.For the waiting cost of customers who is located at x ∈ [0, 1], Wi(x),
we have the following relation

Wi+1(x)−Wi(x) = 1
µ

1−
∞∑

n=i+1

(µx)n
n! e−µx

 = 1
µ

i∑
n=0

(µx)n
n! e−µx = 1

µ
Pi(µx) > 0.
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By W0(x) = 0 for x ∈ [0, 1], we have

Wi(x) =


1
µ

i−1∑
n=0

Pn(µx), if x > 0,

i

µ
if x = 0.

Rewrite the formula of Wi(x), if i = 1, W1(x) = 1
µ
e−µx, W1(x) is decreasing in x. If

i ≥ 2,

Wi(x) = 1
µ

(
i−

i−1∑
k=0

k
(µx)k
k! e−µx −

∞∑
k=i

i
(µx)k
k! e−µx

)

= 1
µ

(
i−

∞∑
k=0

k
(µx)k
k! e−µx +

∞∑
k=i

(k − i)(µx)k
k! e−µx

)

= 1
µ

[i− µx+ µxQi−2(µx)− iQi−1(µx)]

= 1
µ

[
−µxΓ(i− 1, µx)

Γ(i− 1) + iΓ(i, µx)
Γ(i)

]
,

where Qi(µx) is the normalized incomplete gamma function Qi(µx) = γ(i+1,µx)
Γ(i+1) = 1 −

Γ(i+1,µx)
Γ(i+1) . Take derivative with respect to x, by definition of the incomplete gamma

function, ∂Γ(i+1,µx)
∂x

= −µ(µx)ie−µx, we have

dWi(x)
dx

= − 1
µ

[
µΓ(i− 1, µx)

Γ(i− 1) + µ2x

Γ(i− 1)(µx)i−2e−µx − iµ

Γ(i)(µx)i−1e−µx
]

= −Γ(i− 1, µx)
Γ(i− 1) ≤ 0.

As a result, Wi(x) is strictly increasing in i and decreasing in x.

Proof of Lemma 4.2. For any µ > 0, if i = 0, P0(µ) = e−µ > 0. Thus, there exists at
least one î = 0 such that ∑i

n=0 Pn(µ) > i if 0 ≤ i ≤ î. Now, we compare ∑i
n=0 Pn(µ) and

i with µ in different ranges.

(i) Note that ∑i
n=0 Pn(µ) > i is equivalent to P0(µ) >

∑i
n=1Qn(µ). By the 9th

property in Hadley and Whitin (1961), we have

∞∑
n=1

Qn(µ) = µQ0(µ)−Q1(µ) = µ(1− p0(µ))− (1− p0(µ)− p1(µ)) = µ− 1 + e−µ.

If µ ∈ (0, 1), P0(µ) = e−µ >
∑∞
n=1Qi(µ) > ∑i

n=1Qn(µ). Therefore, ∑i
n=0 Pn(µ) > i for

any i ≥ 0.
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(ii) If µ ≥ 1, let µ∗ is the solution of 2 +µ− eµ = 0. Note that the function 2 +µ− eµ

is strictly decreasing if µ ≥ 1 because its derivative 1 − eµ < 0. As a result, for any
µ ∈ [1, µ∗), 2 + µ − eµ > 0, and for any µ ∈ [µ∗,+∞), 2 + µ − eµ ≤ 0. Because
P0(µ) − Q1(µ) = e−µ(2 + µ − eµ), we have that for any µ ∈ [1, µ∗), P0(µ) − Q1(µ) > 0,
and for any µ ∈ [µ∗,∞), P0(µ)−Q1(µ) ≤ 0.

If µ ∈ [µ∗,+∞), then for any i > 0, P0(µ) ≤ Q1(µ) ≤ ∑i
n=1Qn(µ), so î = 0.

If µ ∈ [1, µ∗), because P0(µ) > Q1(µ), P0(µ) ≤ ∑∞
n=1Qn(µ) and ∑i

n=1Qn(µ) is
monotonically increasing in i, there exists a unique î such that ∑i

n=0 Pn(µ) > i when
i ≤ î, and ∑i

n=0 Pn(µ) ≤ i when i > î.

Let µ∗ be the solution of the equation 2 + µ− eµ = 0. Thus, µ∗ = −2−W (−1/e2) in
which W (·) is the Lambert W function in the lower branch.

Proof of Proposition 4.4. For i0 < i1, when the system is in state i ∈ (i0, i1], customers
residing in 0th end point will not join the queue because R− 1

µ
−Wi(0) = R− 1

µ
− i

µ
< 0.

However, for the customers who reside in 1st end point, we have R− 1
µ
−Wi(1) ≥ 0 because

i ≤ i1. While Wi(x) is continuously decreasing in x ∈ [0, 1], there exists x ∈ [0, 1] such
that R− 1

µ
−Wi(x) = 0. Therefore, when there are i customers in the system, customers

who live in [0, x) will not join the queue, but customers who reside in [x, 1] will join the
queue.

Consider an integer b and i0 < b < i1. By above verification, for b there exists
xb ∈ [0, 1] such that R− 1

µ
−Wb(xb) = 0. Now consider b+1, we have R− 1

µ
−Wb+1(xb) < 0

because Wi(x) is strictly increasing in i. However, R− 1
µ
−Wb+1(1) ≥ 0 because b+1 ≤ i1,

so there exists xb+1 > xb such that R − 1
µ
−Wb+1(xb+1) = 0. Therefore, when there are

b+1 in the system, customers who reside in [0, xb+1] will not join the queue, but customers
who live in [xb+1, 1] will join the queue, and xb+1 > xb. It can be easily deduced that for
any integers a, b ∈ [i0, i1], if a > b, then xa > xb.

Proof of Lemma 4.5. Take derivative to ηi(x) with respect to x, we obtain dηi(x)
dx

=
dWi(x)
dx

+ C. By lemma 1, when i = 1, dW1(x)
dx

= −e−µx ≥ −1 and dWi(x)
dx

= −Γ(i−1,µx)
Γ(i−1) =

Qi−2(µx)− 1 ≥ −1, thus when C ≥ 1, ηi(x) is increasing in x.

Proof of Lemma 4.6.We prove this result by contradiction. By (4.4) and (4.8), i0 = ic1

implies

i0+1
µ

> R− 1
µ
≥ i0

µ
,

Wi0+1(1) + C > R− 1
µ
≥ Wi0(1) + C.

If C ≥ 1, by Lemma 4.5, Wi0+1(1) +C ≥ i0+1
µ

and Wi0(1) +C ≥ i0
µ

, thus equivalently we
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have

i0 + 1
µ

> R− 1
µ
≥ Wi0(1) + C. (4.9)

By (4.9), i0+1
µ

> Wi0(1) + C, therefore, i0 + 1 >
∑i0
n=0 Pn(µ) + Cµ. It is obvious that

i0 + 1 > ∑i0
n=0 Pn(µ), therefore the upper bound of C is

1
µ

[
i0 + 1−

i0∑
n=0

Pn(µ)
]
> C.

While C ≥ 1, 1
µ

[
i0 + 1−∑i0

n=0 Pn(µ)
]
> 1, then i0 + 1 − ∑i0

n=0 Pn(µ) > µ. However,
i0 + 1 −∑i0

n=0 Pn(µ) = ∑i0
n=0Qn(µ) < ∑∞

n=0Qn(µ) = µ. Therefore, it is impossible for
i0 = ic1.

Proof of Proposition 4.7. For i0 > ic1, when the system is in state i ∈ [ic1, i0], customers
residing in 1th end point will not join the queue because R − 1

µ
− Wi(1) − C < 0.

However, for the customers who reside in 0th end point, R− 1
µ
−Wi(0) = R− 1

µ
− i

µ
≥ 0.

While ηi(x) = Wi(x) + Cx is strictly increasing in x, there exists x ∈ [0, 1] such that
R− 1

µ
−Wi(x)−Cx = 0. Therefore, when there are i customers in the system, customers

who live in [0, x] will join the queue, but customers who reside in (x, 1] will not join the
queue.

Consider a ∈ (ic1, i0), By above verification, for a there exists xa ∈ [0, 1] such that
R − 1

µ
−Wa(xa)− Cxa = 0. Now consider a− 1, we have R − 1

µ
−Wa−1(xa)− Cxa > 0

because Wi(x) is strictly increasing in i. However, R − 1
µ
−Wa−1(1) − C ≤ 0 because

a − 1 ≥ ic1, so there exists xa−1 ∈ (xa, 1] such that R − 1
µ
−Wa−1(xa−1) − Cxa−1 = 0.

Therefore xa−1 > xa. It can be easily deduced that for any integers a, b ∈ [i0, ii], if a > b,
then xa < xb.

Proof of Lemma 4.8. First, we prove that there exists an ī such that ηi(x) is decreasing
in x. Taking derivative of ηi(x) with respect to x, we obtain that dηi(x)

dx
= dWi(x)

dx
+C. By

Lemma 4.1, if i = 1, then dW1(x)
dx

= −e−µx ∈ [−1,−e−µ]. Since C ∈ (0, 1), if C < e−µ,
then the result holds for ī = 0, and if C ≥ e−µ, then i > 0. For i > 1, by Lemma 4.1,
dWi(x)
dx

= Qi−2(µx)−1 ∈ [−1, Qi−2(µ)−1]. By the property of Qi−2(µ), Qi−2(µ) is strictly
decreasing in i, and meanwhile, lim

i→∞
dWi(x)
dx

= lim
i→∞

Qi−2(µx) = 0.
Denote that ī = arg maxi {−Qi−2(µ) + C ≥ 0}. The threshold ī depends on the value

of C and µ. As a result, if i ≤ ī, then there exists x̄(i) such that if x ≤ x̄(i) ηi(x) is
decreasing in x, and if x > x̄(i) ηi(x) is increasing in x.

Proof of Proposition 4.9. If i > ī, then the total cost ηi(x) is decreasing in x. As
result, if the customers who reside in 0th point join the queue, the whole market will join
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the queue.
If i ≤ ī, then the total cost ηi(x) has an “U-shape” in x. Denote the threshold point

x̄(i) = {x : Qi−2(µx) = C}. In other words, x̄(i) solves the equation Qi−2(µx) = C

and defines the position with the lowest total cost. If x > x̄(i), the total cost ηi(x)
is increasing in x, and if x ≤ x̄(i), the total cost ηi(x) is decreasing in x. Note that
x̄(i) can be different for different i. It would be straightforward to show that for each i,
there exists a threshold x̄(i) such that utility of customers is increasing if x ≤ x̄(i) but
decreasing if x > x̄(i).
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